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PREFACE

The research described in this final report was performed at McDonnell Douglas Aerospace -
East, Saint Louis, Missouri under Contract F49620-92-C-0057, entitled “Nonlinear Control of
Missiles.” The program was managed by Dr. Marc Jacobs of the Dynamics and Control Branch,
Directorate of Mathematical and Computer Sciences, Air Force Office of Scientific Research,
Bolling Air Force Base, DC.

McDonnell Douglas's program manager and principal investigator was Dr. Kevin Wise. The
research described herein was performed by Dr. Kevin Wise, Dr. Jackson Sedwick, and Ms.
Rowena Eberhardt of McDonnell Douglas, in consultation with Professors Christopher Bymes,
Alberto Isidori, and Heinz Schattler of Washington University, Saint Louis.

The research reported here was conducted during the period September 1992 through
September 1995.
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1 Introduction

In aircraft close-in-combat scenarios a large off-boresight angle targeting capability, or the
ability to engage targets in the rear hemisphere, is a significant advantage. Super agility in missiles
refers to this capability. The research documented in this report is focused on developing this
capability for air-to-air missiles. Following a successful missile launch and separation, low
dynamic pressures can render aerodynamic controls ineffective in performing an agile turn. When
the main propulsion system ignites vectoring the thrust can provide this capability. As the velocity
increases, the aerodynamic surfaces become more effective, and may be blended to further enhance
agility In order for the missile to possess super agility some form of alternate control is needed.

New Air Force interests in missile alternate controls (reaction jets, thrust vectoring) to
augment, or possibly eliminate, aerodynamic control surfaces poses a considerable control system
design challenge. Low cost reaction jets are constant thrust devices which result in bang-bang type
controls. Thrust vector control actuation systems have hard angle and rate limits and actuator
nonlinearities. Blending these alternate controls with aerodynamic control surfaces combine
current linear autopilot design problems, typically solved using linear robust control methods, with
nonlinear controls in which design methodologies do not exist. In addition to the nonlinear
actuation systems, the high angle-of-attack missile dynamics and aerodynamics are very nonlinear.

The Nonlinear Control of Missiles research was focused on developing innovative flight
control system design concepts, algorithms, and design tools to address agile missile technology
needs. Specific progress was made in the following three areas:

» Missile flight control using nonlinear H.,.
+ Sliding mode design for reaction jet controlled missiles.

+» Nonconservative mixed uncertainty analysis algorithms.

1.1 Research Objectives, Accomplishments, and Transitions

The Nonlinear Control of Missiles research objectives address several aspects of missile flight
control system design. The agile missile flight control problem requires controlling the missile's
flight at high angles of attack using actuators that are nonlinear. The research objectives in
applying nonlinear H,, optimal control and sliding mode design address the nonlinear aspects of

this problem. The third research objective in developing nonconservative robustness analysis
-1-
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algorithms addresses the need to analyze flight control systems about an operating point. Using
linearized models of the missile's dynamics, nonconservative analysis algorithms are required to

determine the flight control system's sensitivity to uncertain dynamics and aerodynamics.

The following paragraphs briefly summarize the research objective, accomplishments made,

and transitions of the technology in each area.
Missile Flight Control Using Nonlinear H,,

The research objective was to apply recently developed nonlinear H., optimal control to missile
flight control problems. Accomplishments include developing algorithms to approximate the
solution of the Hamilton-Jacobi-Isaacs partial differential equation, developing software for
implementation of this approach to general nonlinear problems, and application of this approach to
a six dimensional missile flight control problem. The software has been transitioned to MDC's
Guidance and Control Technology IRAD for further application to missile guidance and control
problems. One journal paper [1] and three conference papers [2-4] were published presenting

theory and application of the approach.

The method of successive approximations was used to obtain an approximate solution to
characteristic equations for the Hamilton-Jacobi-Isaacs partial differential equation. Software was
developed and connected to MATRIXx to implement the approach on a nonlinear missile flight
control problem. The missile software used only the Ist approximation to the integral equations.
The approach was applied to an agile missile using aero/TVC control actuators performing an
agility turn. Simulation results show excellent performance. A six dimensional state vector was

used in modeling the missile's dynamics.

FORTRAN software was developed that applies the successive approximation solution
procedure to the characteristic equations for general nonlinear problems. Documentation to support
the software is contained in Appendix A, with the FORTRAN listings given in Appendix B. The
software can be obtained from the authors electronically (by email) at wisek@mdcgwy.mdc.com.

Sliding mode design for reaction jet controlled missiles.

The research objective was to develop high performance autopilots for blending reaction jet
thrusters with aerodynamic control surfaces for anti-air missiles. Since low cost reaction jets
(reaction control valves) are on-off devices, a variable structure control approach was used. Under
this objective, algorithms for designing H., sliding modes were developed.

McDonnell Douglas Corporation
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The necessary theory extensions were made to design sliding mode control laws using H.,
design methods. This new design method combines results from singular perturbation theory and
high gain feedback control theory. The H,, sliding mode design algorithms were applied to a
missile autopilot design problem. The resulting control laws were used to blend aerodynamic
controls with on-off reaction control valves (RCVs) to maneuver a missile. A comparison of the
improved disturbance rejection capabilities of the H,,, sliding mode design was made with a linear
quadratic based design. A conference paper [5] was written presenting the theory extensions and
design results.

This research was transitioned to MDC's Air Force Alternate Control Technology (ACT)
program, Contract No. F08630-92-C-0010. The ACT program is evaluating alternate missile
control effectors (reaction jet thrusters, thrust vectoring) to improve missile agility. MS Eberhardt,
who supported this AFOSR research, was also responsible for designing missile autopilots (for
on-off reaction jets) on the ACT program. Her dual role (AFOSR researcher/project engineer) led
to an improved understanding of sliding mode controllers, and improved autopilot design software
for the ACT program.

Nonconservative mixed uncertainty analysis algorithm.

The research objective was to develop a parameter space based nonconservative analysis
capability that can compute robust stability bounds on simultaneous real and complex uncertainties.
Algorithms were developed that combined simulated annealing with conjugate gradient
optimization. Under MDC IRAD, these algorithms were coded in FORTRAN and incorporated
into a toolset used by MDC's aircraft and missile projects.

Significant progress was been made in the development of a software analysis tool capable of
analyzing mixed uncertainties. The FORTRAN program developed is referred to as ROBUSTC.
Sample analysis problems that have 3 or fewer uncertainties have been analyzed using ROBUSTC.
Results computed using ROBUSTC have matched analytical calculations for these test problems.
Two conference papers [6,7] were written describing results in this area.

Further progress was made in extending the approach to accommodate a large number (n = 30)
of uncertain parameters. The modification to the approach was simply a “vectorizing” of the
variation polynomial algorithm, making the algorithms more computationally efficient. The
method does have a drawback in that for the first pass through the problem the determinant of a
matrix must be calculated 27 times. This only has to be performed once, at the beginning. This

3.

McDonnell Douglas Corporation




Report MDC 95P0058 ’ Nonlinear Control of Missiles

feature of the variation polynomial algorithm does make the analysis of high dimensional problems

CPU intensive.

The robustness analysis tools and experience developed under this AFOSR program have been
transitioned to MDC's 4th Generation Escape System program, Contract No. F33615-92-C-2290.
This joint Air Force/Navy program will flight test a new ejection seat at Holloman AFB during
1996. The flight test program has 14 launches planned from a rocket sled with a F-16 forebody.
These robustness analysis tools have been integral to the design and analysis of the seat's flight
control system. These tools are used to assess the sensitivity of the ejection seat to uncertain mass
parameters and uncertain aerodynamics. This is of critical concern in the ejection seat problem
because the seat's flight control system must accommodate crew members ranging from the 95%
male to the 5% female (this changes both the mass properties and aerodynamic characteristics).

This technology was further disseminated to Navy and Air Force laboratory experts (and MDC
engineers) through a two day flight control design workshop held in St. Louis, November 4-5,
1993. This intensive workshop presented key aspects of MDC's optimal control design
methodology and robustness analysis process and tools. This workshop received high praise from
the participants and MDC management. The presenters (Kevin Wise, Rowena Eberhardt, Joe
Brinker, Mike Sharg) received MDC's New Aircraft and Missile Product (NAMP) Division
Leading Edge Award.

1.2 Organization of the Report

Section 2 presents nonlinear H., optimal control theory and missile autopilot design results.
The missile simulation results presented here use nonlinear aerodynamics and have not been
published previously. (Previous papers published preliminary results based upon linear
aerodynamics with nonlinear dynamics.) Software for the successive approximation solution
approach and documentation are contained in the appendices. Each chapter contains at its end the

references used in the chapter.

Section 3 details the development of H,, sliding mode controllers for missile autopilots. A
complete derivation of the algorithms for developing a missile autopilot is presented. Simulation
results for an agile missile maneuver are also presented.

Section 4 presents the research in developing nonconservative robustness analysis algorithms.

The algorithms and application results are presented.

4-
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2 Agile Missile Flight Control Using Nonlinear Heo

Consider the nonlinear system modeled by the equations of the form

x=f(x)+g(x)u+gax)w
z=h(x)+dj(x)u+dy(x)w

2.1)

The first equation describes a plant with state x, defined on a neighborhood X of the origin in R"
with control input % € R™ and subject to a set of exogenous input variables w € R” which includes
commands to be tracked and/or disturbances to be rejected. The second equation defines the
regulated variables z € R® which may include tracking errors, for instance the difference between
the actual plant output and its desired reference behavior, expressed as a function of some of the
exogenous variables w, as well as a cost of the input u needed to achieve the prescribed control
goal. The mappings f(x), g(x), h(x), d;(x), in Eq. (2.1) are smooth mappings defined ina
neighborhood of the origin in R". Also, it is assumed that f(0)=0 and A(0)=0.

The purpose of the control is two fold: to achieve closed loop stability and to attenuate the
influence of the exogenous input w on the regulated variable z. A controller that locally
asymptotically stabilizes the equilibrium x = 0 of the closed loop system is said to be an admissible
controller. The requirement of disturbance attenuation may be dealt with in several different
manners, depending on the specific class of exogenous signals to be considered and/or the
performance criteria chosen to evaluate the regulated variables. The following characterization
taken from [93] is considered here. Given a positive real number 7, it is said that the exogenous
signals are locally attenuated by 7 if there exists a neighborhood U of the point x = 0 such that for
every T > 0 and for every piece wise continuous function w:[0,T]— R for which the initial state
x(0) = 0 remains in U for all ¢ €[0,T], the response z:[0,T] — R® of Eq. (2.1) satisfies

T T
j 2T (0)z2(t)dr < ¥ J w! ()w(z)dT (2.2)
0 0

The problem of local disturbance attenuation with internal stability is to find an admissible

controller yielding local attenuation of the exogenous inputs.

The state space solution of linear H,, optimal control problems can be found in [94]. This
same problem of reducing the H,, norm of a closed loop system has been viewed as a two person,
zero sum, differential game in [95], where the solution is related to certain algebraic Riccati
equations. This approach, for nonlinear systems has been pursued in [96] (also in [95]). For

-6-
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nonlinear systems the Riccati equation is replaced with a particular Hamilton-Jacobi equation
known as the Isaacs equations ([97], p. 67, Eq. (4.2.1)). The problem of disturbance attenuation
in nonlinear systems requires the solution of the Hamilton-Jacobi-Isaacs (HJI) equation. van der
Schaft [91] addresses this issue and shows that if the linearized system (at an equilibrium point) is
such that the linear H,, optimal control exists, then the HJI equation is solvable (locally) and the

corresponding state feedback solution has the desired stabilizing properties.

This problem of disturbance attenuation in nonlinear systems is applied here to an agile missile
flight control problem. A state feedback control is constructed to control the missile in performing
a high angle-of-attack maneuver in order to intercept a target in the rear hemisphere. The nonlinear
H,, optimal control is found by solving the HJI equation (locally) by transforming the partial
differential equation into a two point boundary value problem (TPBVP) using the method of
characteristics, and approximating the integral solution of the TPBVP using successive
approximations. The next section details this solution approach, followed by its application to the
missile flight control problem. Appendix A of this report contains documentation for the

FORTRAN software implementation of our solution approach.
2.1 Approximate Solution of the HJI Equation

Consider the problem of regulating the state x to x=0 by means of a state feedback control law
u =u(x). The design model is given by Eq. (2.1).

The HII partial differential equation (PDE) can be expressed as
xT r *T
%glvx +dih R %glvx +djh -

* T
Vel + k=] 25070 S,
7g2Vx +d2h -Z-ngx +d2h

0 (2.3)

where the dependency on x has been dropped to shorten the expression, and

[d{(x)d,(x) dl (x)dy(x) ]
dj (x)dy(x) dj (x)dy(x)~7*1

The solution approach used here forms the nonlinear H,, control law around a gain scheduled
linear H., solution, based upon the linearized dynamics, and then adds to the linear control law
based upon an approximate solution to the HJI PDE Eq. (2.3) using the method of successive
approximations. This represents a new approach to solving HJI PDE's.

Equation (2.3) can be written as
-
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T
0=hr"h—hTSRISTh+Vy(f - BR™'STh) -4V BR7IBTV; (2.4)
where B=[g;(x) g2(x)], S=[dj(x) d(x)], and 7 in R results from a linear H, design

using the linearized dynamics about x =0.

The state feedback control is given by
T
u=[1 0f-R" )(%BTV; + STh) 2.5)

where the Lyapunov function v (x) must satisfy the HJI PDE, Eq. (2.3).

An important special case of the nonlinear dynamics, Eq. (2.1), useful in aerospace
applications is where the nonlinearities are confined only to f (x). For this case

h(x)=Cx, g1(x)=Gy1, g2(x)=Gy, di(x)=Dy, da(x)=D; (2.6)
The nonlinearities in f(x) are modeled as

f(x)=Ax+ Af(x) 2.7
where Af(x)=0(x%).

The solution to the linear H,, problem is obtained from the following algebraic Riccati equation
(ARE)

XA+ATX +0+XRX =0 (2.8)
where

B=[G; G;], S=[D; D]

o=c’(1-sg7's")c, R=-BR"'B'

A=A-BRIsTc

The solution approach used here considers the nonlinearities Af(x) as generating a departure
from the linearized H,, solution. Therefore, the Lyapunov function V(x) is expressed as

V(x)=x" Xx + AV(x) 2.9)

-8-
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where X is the solution to Eq. (2.8). AV(x) will be 0(x4) and xTXx will be the Lyapunov

function for the linearized solution. Substituting Eq. (2.9) into the HJI PDE Eq. (2.4) and using
Egs. (2.6) through (2.8) the following first order PDE is obtained.

0=2xTXAf + AVx[(/i +RX )+ Af] +d4v, RAVT (2.10)

Notice that Af(x)= 0 implies that AV, = 0. Stability of the linearized solution implies that all of
the eigenvalues of the A+ RX are in the left half plane.

Equation (2.10) is solved by the method of characteristics [Ford9, pp- 230-231]. The
formulas from Ford? apply to a PDE of first order in one dependent variable (& = AV) and n

independent variables (x; -+ x,). Let p=A4VY, ie.

AV _ dAV

p]= ax] s ey, pn ax
n

(2.11)

The general first order PDE has the form

0(xj,+ Xy, P, Pp €)= 0 (2.12)

The characteristic strips satisfy the following 2n+1 differential equations

dx;

—1 =0,
dt pi
ap; _

E— = —Oxi - ng,- (2- 13)
d

ar = eplp]+"‘+9p,,pn

To further simplify notation define F = A+ RX. Equation (2.12) becomes
(x,p, €)= 2xT X Af + pT[ﬁx+Af]+ pT§ p=0 (2.14)
The characteristic equations for Eq. (2.14) are (with x replaced by z)

T
dz _(96(zp.8)\ _ 5, 15 2.15
0 ( . )—Fz+2Rp+Af(z) (2.15)

9-
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dp _ _( ae(z,p,é))T _B(zpl)
dt 0z &

=—FTp-24fT Xz - AT p-2XAf(2)

d¢ _(90(z,p.6)\ _ Tz T _1.Tp
& —(————ap )p—p Fz+p  Af(z)-5p Rp

where the independent variable ¢ need not correspond to time. The last scalar equation in Eq.
(2.15) need not be solved unless the term AV (Eq. (2.9)) is needed in computing the Lyapunov
function.

Notice that an integral of Eq. (2.15) is
TR [z T T
p -4-p+[Fz+Af(z)] p+22TXAf(2)=0 (2.16)

The characteristic equations Eq. (2.15) can be put into integral form in order to attempt a
successive approximation solution procedure. The state and costate equations from Eq. (2.15) can

be written as

H))_[F 4R [z(r)] [ 4f (z(1)) ]

[P(t)] {0 —FT] p(0)]" | a(z(0). p(0)) 24D
where

q(z.p) =247 (2)Xz - Af T (2)p - 2X Af (2) (2.18)

and Af is defined in Eq. (2.7). The integral of Eq. (2.17) is

1) {5 —%15"}’ 20)], | K _%fr}‘ 4(2)
[p(t)]ze [p(o)]+£e [q(z, p)}” 2.19)
Define
o] 01 #120)]_ [ﬁ #)
_{ 0 ¢22(r)}’e (2.20)
10-
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Differentiating the ¢;; yields

611(6)=Foy;(0)
612(6)=Fo12(5) + § Rg5(2) (2.21)
$22()=~=FT9(t)

with initial conditions of ¢;;(0)=1,9;2(0) = 0,¢2,(0) =1. Solving for the ¢;; yields

o11(t) = €

on(t)=e 2.22)

t
5 fr 1 = _fpT
012(t)= eF’Je'FT -%Re_F Tdz
0
Substituting these into Eq. (2.19) results in

t
2(8) = 011(t)z0 + 012()po + [[$11(t— D)Af (2) + 912( = Da(7))de (2.23)
0

t
p(t)= $22()po + [ 922(2 - Dq(c)dz
0

where the dependency of g(e) and Af(e) on z and p has been dropped for notational
convenience. Solving for py and substituting this into the z(r) expression yields

t t
2(0)= 011020 + 012000227 (Vp(0) + [[ 8110 = D)AF(2) + {12t = )~ 012100257 (0922t~ D)} a(2) [t
0 ¢

(2.24)
Define
J(t)= 0192271 (1)

t t
~ - . =T ~T - _ . =T _
=l [eFTLReF 7 arel ™t = [ (L R)eF " ar
0 0

(2.25)

Let { =t— 7. Then
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J(t) =jeﬁ $(4R)e "Car (2.26)

(2.27)

Note that the integral J(oo) must exist since F is a stable matrix. Several useful relationships from
Eq. (2.27) are:

al _ Fi(1p\ Ft

—=¢"(3R)e (2.28)
I _ s 5T L 1p

—=FJ+JF" +5R J(O)=0

& =T 1 5. Ftf 15\ Ft

FI+JFT +1R+e (——Z-R)e =0

Fi(e)+J(eo)FT =—LR

In order to simplify the integral equation, Eq. (2.24), define the last term in the integral of Eq.
(2.24) inside the { } as

K(t,7)= ¢12(t— 1) - $12(t)92271 (%) (2.29)

Using Eq. (2.21), and differentiating, we have

aa—lf = Fgpp(t— 1)+ LR (1 - 7) —[ﬁ¢12(1)+ %ﬁ¢22(f)]¢22_1(7)
= F{p12(t— 1) - 912(1)9227 ()] + LR[¢2(t—7)- 922(1)9227(7)] (2.30)
= FK(t,1)

At =0 we have
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K(0,7)= ¢12(~7)— 12(0)227(2) = ¢12(~7)

Fr ¢ _Ff 1 =~ BT
=¢ f? j e_FC%Re‘F Cdt
0
Frf Fu 1 FTu
=-—e _[e sRe” Tdu
0

=-¢F%)(7)

(2.31)

Using Eq. (2.30) and (2.31), K(z,7) can be expressed as

K(,7)=ef'K(0,7)
= _F(t-7) J(7) (2.32)
=—¢1;(t—7)J(7)

By differentiating Eq. (2.32), Eq. (2.30) is obtained. Substituting these expressions into the z(¢)
equation in Eq. (2.23) results in

t
2(t) = 917(t)2(0)+ J(1)p(2)+ [ ¢1(¢ - D] Af (2) - J(z)a(7)}dT
0

. (2.33)
=el"2(0)+ J(1)p(t) + €™ [ FT{Af (1) - J(7)q(2)}dT
0
To solve for the costate p(z) in Eq. (2.23) we have
T FTf FT
p()=€" 'p(0)+e " ! [ Fq(n)dr (2.34)
0
. FT; .
Multiplying by e ° results in
FTi e
e 'p(t)=p(0)+ je q(t)dt : (2.35)
0
The boundary condition for p(t) at oo is known. Taking the limit as ¢ — oo yields
T g
0o p(=)=p(0)+ [e" Tq(z)dr (2.36)
0

13-
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Solving for p(0), using the fact that p(z) — 0 as t — oo, yields

p(0)= -—Jeﬁ TTq('z:)dr (2.37)
0

Substituting this into Eq. (2.34) yields the following expression for p(2):

=T T ¢ T
p)=eF 1p(0)+e7F ! e Tq(n)dr
0

T\ g7 L st
=—¢F! JeF Tq(r)dr—jep Tq(t)dr (2.38)
0 0

ST, ¢ 7T
=—F ‘feF *q(1)dr
t

The resulting integral expressions for the characteristic equations in Egs. (2.17) are

. _ ¢ .
2(t) = e"'2(0) + J()p(r) + €' j e FTLAf (2(7)) - T (D)q(2(2). p(7))}dT
0

p()=—""" [ Tq(a(), p(r)ds 2.39)
t

Solutions to these equations thus define a curve between (x(0),p( 0)) (x(0),p(0)) and the

equilibrium point (0,0). Itis easy to verify (by differentiating) that these expressions satisfy Eqs.
(2.17). Note that due to the stability of F, the integrals in Eq. (2.39) are defined for only mild
restrictions on Af(x).

The successive approximation procedure used to solve the integral expressions in Eq. (2.39)

begins with the solution of the linearized equations
(0) /) — Ft
zo(t)=e (2.40)
pPm=0
where the superscript on z and p denote the order of the approximation. These are then

substituted into the right hand side of Eq. (2.39) to evaluate the next approximation, and so on.
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After an acceptable degree of approximation has been achieved, the control is generated by
evaluating p(z) at t = 0. More precisely, the procedure is as follows.

To compute the state feedback control, Eq. (2.5), AV, (x) is needed. To obtain AV,(x) the

following three step process is used.

1). Set the initial condition z(0) in Eq. (2.39) to the current value of x .
2) Generate the desired degree of approximation, starting with Eq. (2.40).
3) Evaluate p(0) and equate AV ,(x) to p(0).

From Eq. (2.5) the control is then given by

ux)=[1 O-R"’ ){% BT (2%x+4V])+ STCx} (2.41)

Local Contraction Mapping

In this section we prove that the successive approximation solution procedure provides a local
contraction mapping. This is important in proving the existence and uniqueness of the solution.

Define

| 2()
W)= [p(t)]

g[w(0)] = =247 [2(0)|X2(t) - AF T [2(1)] p(t) - 2X Af [ 2(2)]
J(t)= jeﬁréﬁeﬁrfdt= eﬁlﬁeﬁT‘ -p
0

where p satisfies the Lyapunov equation Fp+ pF! = IR. Let
s[w(e)] = Af[2(2)] + pg[w(?)]
Note that g[w] and s[w] are second order or higher in w since Af[w] is second order or higher.

The integral equations (2.39) can be rewritten using the above definitions as
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2(t)=ef'x— J(:)Tep' (O glw(v))de+ jeﬁ (=) w(z)]d7 - jeF' el Tglw(m))de
t 0 0

p(t)==[ef" Dw(o)ldr
t

Let Pw be the successive approximation mapping

el Tqlw()|dr

'0)

eFlx— J(:)j FH(e=0g[w(7)]de+ j Fu=1)w(1))dr
(Pw)(t)= g

0'—-"
"'1.

—IeF (T_t )q[w( 7)|d7

It is shown that this is a contraction in a sufficiently small neighborhood of the equilibrium
[z=0, p=0], as follows.

Let [+, denote the Euclidean norm in R". Let |4 be the norm on C21[0,%0), i.e.

. The induced matrix norm of e/ is eFHl = e where A is the real part

()l = g llw ,
I3
of the nghtmost elgenvalue of F. Due to the stability of F, A <0. The induced matrix norm of

J(r) satisfies

Fr

t
- T ~
1t 7 dr=‘[e2Mdr“-%R"‘
1 i 1

(’ = b,

V@), < j e
0

4
1

Now, define

B, ={ye R <r]

wo(t)= [eﬁtx]
0

5, ={w() € C2[0, %) ()= wo(*)]- <

r}
Let wj(+) and w,(+) be arbitrary elements of S,; then wy(z) and wp(¢) lie in the ball B, for all
te[0,0).
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-J(t)]geﬁ "0 (gfwy (2)] - alwa (o)) + [ D (s w(2)] - s[wa(e)])de -
t 0

(Pw)e) = (Pw2)(t)= jeﬁ 'ﬁei TT(q[wl(r)] — g[wy(7)))dr

0

_TeFT(‘r—t)(q[wl(T)]_ a9z

t

Taking the norm on both sides yields

K (2) - wy (7)), d7
3

w0~ (Pra )< 7]
+{le Ltk

=
Ko[wi(7) - w, (7)), d7+ j"eF (=)
0

e FT (1)

K [wi(7)-wa(7)),, dr + nf e Kg[wi()- wy(7)],, 47
13 t s

where Kk and x, are Lipschitz constants in B, for s(+) and q(+), respectively. These constants

are finite due to the second order nature of s(+) and g(). Evaluating the matrix norms and using

o= el s O[5 (47 ) 25 Ks}

[ Ry e

Since the expression on the right hand side does not involve ¢,

[(Pwr)e) = (Pwa)(e

sup norms on wj(r)— wy(z) results in

c SPriwi ()= w2(*)

where
pr = (5o, + W Jea + >0

The parameter p, can be made less than one by choosing r small enough because of the 2nd order

nature and Lipschitz continuity of s(+) and g(+). Therefore, P is a contraction mapping on S, for
r > 0 sufficiently small.

To show that P maps S, into itself for r sufficiently small, let w(+) € S,. Then
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(Pw)(t)=wo(r) =

-J (t)]?eﬁ T(2-1) (q[w( 'L')] - q[wo( 1)])(11: + Ieﬁ (¢-1) (s[w( ’L')] - s[wo ( T)])dr -
t 0

je“‘ e *(g[w()] - g[wo(2)])dz

~[f ’<f-f)(q[w(f)] — gwp(@)])dr
t

-J (t)ofeﬁ T(T‘t)q[wo(r)]dt+j’eﬁ (t_f)s[wo(r)]dt JeF tﬁeF T [wo(r)]dj
0

+
—IeF T(H)q[wo (1)]dz
i t _
Taking norms results in
R 1 a1
"(Pw)(') - C < P,-"W(’) - + —.|2|/'L_! Kq "x"n + :'I Ks"x"n + "p“, :x Kq"x"n’
since

lafwo ], <

F A
€ t'x < qu t"x“n < Kq"x"n

q[ Ft x]
n

<
_K'q

and similarly for s{wy(z)]. This results in

[(Pw)(+)-

1
% |1,

s+,

< pr"W *)—wp(*

where the right hand side can be made as small as desired by choosing r small.

2.2 Missile Nonlinear H .. Optimal Control

This section presents the application of nonlinear H.,, state feedback control to the agile missile

flight control problem, and outlines the algorithms that are used in the successive approximation
solution of the HJI equation. Only a pitch-plane autopilot is considered. The autopilot will
command angle-of-attack (AOA) by thrust vectoring and deflecting the aerodynamic control

surfaces.
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The missile autopilot command (the control input) can be separated into linear and nonlinear
components as

U =ULINEAR + UNONLINEAR

where u; jypag Tesults from a gain scheduled linear H,, state feedback design, and UnoNLINEAR
is proportional to AV,{ (x) which is obtained by solving the HJI PDE. The state feedback control
is u=—K(x)x. The feedback gains K(x) are calculated at a very fast sample rate (1000 Hz).

Since this is proportional state feedback, the digital implementation has the identical form
u=-K(x)x.

The remainder of this section describes the missile's pitch plane dynamics, the design model
for the linear H,, state feedback design (u;ynygpar), and the calculation of AVf(x ) and

UNONLINEAR-
Missile Dynamics
The missile's rigid body pitch-plane short period dynamics are described by

&= o {cos(a)(G, + 24 +T,) - sin(@)(Gy + Xa +Ty)} +4 (2.42)
q' = MA + MT

where « is the angle-of-attack, ¢ is the pitch rate, and
G, = gcos(0),; G, = gsin(0)
Zy=Zq0+ 250,
Xq=Xp+Xq0+X50,
My =Mp+Myo+ Mg, +Myq
T, ==/ sin(87);T, =1/, cos(67)
M7 =My sin(S7)

where (G,,G,) models gravity, (X4,Z,) models normalized aerodynamic accelerations, My

models normalized aerodynamic pitching moment, (T, T,) models thrust forces normalized with

respect to the mass, and My models the pitching moment produced by the thrust vectoring
normalized by the pitch inertia. The variable §, models the pitch fin angle and dr models the

pitch thrust vector angle.
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In addition to the above dynamics the integrated aerodynamic/thrust vector control 10 (TVCO)
system has a common actuator that drives both &7 and the aerodynamic control surfaces &,

(87 = u8,). These actuator dynamics are modeled using the following second order model:
5 +28wd + 0?6 = 06,
Calculation of u;;vgar

The autopilot design approach used here is similar to that for linear H, control designl 1, The
missile's dynamics are augmented with weighting filter states that will shape the sensitivity,
complementary sensitivity, and control activity frequency responses. The design objectives are to
shape the sensitivity S(s) in order to follow AOA commands, to shape the complementary
sensitivity T(s) to roll off the plant, and to penalize the control activity C(s).

The autopilot design requires the calculation of the “trim” state or equilibrium. This calculation
was performed using the TRIM function from MATRIXx which operates directly on the nonlinear
simulation. Trim is defined as =g = 8§=85=0. The output of the TRIM function was the
steady state pitch rate ¢ and actuator command &, for a specified AOA, Mach, altitude, and center

of gravity.

The linearized missile dynamics about the trim point are modeled in the following state space
model:

Ol w2 01408
{1_ a é q
5§15l 0 o 0 1 §+ a?z %
6 L0 0 ~o ~2{w | x
Ap P
where
7 _ da 5 _da
« = Sl 36
AITRIM TRIM
2q 2q 2q
M, =— , = — Mo =—=
* Oalrm” ! %lrim 8" 38l rrim

The design objectives were realized by shaping the sensitivity S(s) and complementary
sensitivity T(s) with weighting filters, and by penalizing the control activity C(s)=Wc6. The
design of these weighting filters influences the bandwidth of the autopilot. To design these filters,
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the filter coefficients were related to their 0 dB crossover frequency, denoted @,. As @,
increases, the bandwidth increases as well as the amount of control activity.

The sensitivity weighting filter Wg(s) is given by

ws(s)= KEL)

The low frequency behavior of W(s) demonstrates integrator characteristics in order to satisfy the
AOA command tracking objective. The gain K was chosen such that the magnitude of Wg(j@)
was equal to -3 dB at @,. The zero was placed at @,.

The complementary sensitivity weighting filter Wy (s) is given by

In designing Wr(s) an @,,;, was selected, 7, =1/ w,,;, computed, and then the gain K was
selected such that the magnitude of Wy (j@) was 0 dB at @,. The denominator time constant was

then arbitrarily selected to maintain a proper transfer function.

The weighting filters used in this study were:

14.95(0.0473s + 1
Ws(s) = 220N+ ]
0.444(0.0401s + 1)
W =
7)== 0015 +1)
We(s)=0.01

These weighting filters were not scheduled with flight condition. State space models were created
for Wg—(Ag,Bs,Cs,Ds), and similarly, Wy —(Ar,Br,Cr,Dr), in order to connect the

weighting filters with the missile dynamics.
The linear H,, design model is given by

x=Ax+Gu+ Gw
z2=Cx+ D+ Dow

which is terms of the missile dynamics and weighting filters is
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(] | 4 O O0f« By [0
Xg |= Bscp AS 0 Xs +_BSDp 60+ BS o,

ir] |BrCp 0 Ap|xr) | BrD, 0
A e Gz

zr|=| DrC, 0 Crixsi+| Dp 6.+ 0 |og

X 0
ic] |WcCA, 0 O |lxr) |WeCeB,
- v . = —
c D, D,

Using this model the ARE in Eq. (2.8) is solved to form the linear control at each design point in
the flight envelope. The linear gain schedule was computed at the following design points:

AOA Mach Alt CG
(deg) (Kft)
-100 0.1 0 0
-90 06 10 1
-80 08 35

-70 1.0

-60 1.15

-50 15

-40 20

-30 30

20 50

-10

5

0
5

10

20

30

40

50

60

70

80

90

100

At each of these design points a y-iteration was performed to determine the level of disturbnace
rejection. At each of these design points uyjygpag is given by

Ul INEAR = [1 0](—R_1)(BTX + STC)X
=-Kx

Calculation of uyonLINEAR
The state vector for this application is given by
. T
x= [a,q, S, 6,ws,wr] — XIRIM
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where the subscript “TRIM” refers to the equilibrium value, and the states wg and wr are from
first order weighting filters used in the linear H,, design. This definition of the state vector
satisfies the requirement that £(0)=0.

The elements of f(x)in Eq. (2.1) are all linear except the first element, which is

: T T
f1 ﬁ[—sma(xo+xaa+xaeae+-r—n-)+cosa(zaa+25¢68+;u5e)]+q (2.43)

where 8 =pud,. Let sor and cop denote the sinaggppy and cosargppy, respectively.
Expanding f; to third order terms results in

fi=v=-sarXr +carZr]+qmm (2.44)

+Vl':-[—saT(Xa +Z1)-cor(Xp +Zg)r1 + 3, + Vlm-[—saTX‘;e + CO‘T(Z&, + -:—l#)]%
T
+'V1:[—6aT(Xa + %ZT) +sor ('%XT —Zqy )XT]X% + T/l';'li—caTX(se - SO‘T(Zae + —’;p)]xl)%

T 2
+ﬁ[—%saT(Xa +3ZT)+%'C(XT(XT —3Za)]xi5 +ﬁ|:%saTX6e '—%caT(Z5e +—r;;#)]xl X3

where XT = Xo +XaaT + X525T +—-T-1 and ZT = ZaaT +de 5]" +1[J5T. The first line in this
m m

expansion adds to zero because of the definition of trim. The next three lines are linear in the
states, and will be denoted as A;;x;, Ajpxp, and Aj3xz, respectively. The remaining terms

represent the higher order nonlinearities (O( x? )) and are up to third order. These terms define
Af(x). Rewriting these terms in a more compact form results in

Af1(x) = c1xT + coxyxg +c3x3 + cqxixg (2.45)
The vector Af(x) is given by
4f (x)=[4f1(x),0,0,0,0,0]" (2.46)

and
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-2cpc1 +cyx3 + 3C3X12 +2cq4xpx3 0 0 0 0 0]
0 0 0 000
A fz (x)= cyxy + C4x12 0 0 0 0 0 2.47)
0 0 0 000
0 0 0 000
i 0 0 0 0 0 0]

The next step is to compute the nonlinear part of the control, AVf(x). Only the first

approximation is computed. Starting with the integral equations, Eq. (2.39) is
oo pT )
AvE(x)=- jo ef T[—ZXAf(z(r)) —24fF (z(t))Xz(t)]dr (2.48)

where the stable matrix £ and the positive definite symmetric matrix X are provided by an He
design for the linear system, and z(z) is the linear solution of the characteristic equations

z( t)=eF ‘x. In this application F has distinct eigenvalues, so that if F is diagonalized as
F=UAWT then

- n
T =AW = Y ! eMi® (2.49)
i=1

-T n .
el T= ZWiuiTe"L‘T
i=1

where the y; are right eigenvectors, w; left eigenvectors, and A = diag[li] is the diagonal matrix

of eigenvalues of F. Using Eq. (2.49), the state x is transformed using y = wTx. This gives

n
2=UeTy=Y yie (2.50)
i=1
and
<A
Xz=Y ye"i*Xuy;. (2.51)
i=1

The nonlinear expressions for Af(z) and Aff( z) can be written using Egs. (2.50) and (2.51) as

the following linear sums of the eigenvalues:

24-

McDonnell Douglas Corporation



Report MDC 95P0058 Nonlinear Control of Missiles

n
AT
2=y
j=1

L AT
23=D.yje usj
=1

n n l l
2f = ZZ)’j}’ke( a k)fuljulk

j=lk=1
n n
Ai+dglt
zj23 = ZEyj)’ke( +h) uj jUsg
j=lk=1
n n n
3 Ai+d+A )T
DY Zzyjykyle( ! ) U Uik
jeti=1i=1 2.52)
n n n
2 Ai+dp+Ag)T
2fz3= Y, ZZYj)’kyle( ! ) W] jU1U3]
j=lk=11=1
to obtain
Af =e1gT zel 2+ ephT ze] ze] 2 (2.53)

Asz = (e ]gT + ge1T )ze}r + (Ze ]hT + heJT )zeITzeJT
where

el =(1,0,0,0,0,0)
g7 =(c7,0,¢2,0,0,0) (2.54)
T =(c3,0,¢4,0,0,0)

Inserting these and Eq. (2.49) into Eq. (2.48) results in
avlix)= WT[eA72U(e1gT +gef )eM(quU )eA” HAT(ZUTXelgTU )eAT(yelT U )e’” +
0
eA72UT (260" + hef JUe" (yel XU)eA 7 (yel U)e” + A7 (20T Xeyh U e (ye U)e?(yel U)e’”]dry
(2.55)

This can be integrated using the identities
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- PuQy [ (A+dj+da)b  (Ai+Aj+A4)a
ATp, ATH AT _ ik>kj itATAE)D j 2
e "Pe”"Qe ]ijdt Ek o /lj yy (e e (2.56)

R/ ey

(e(li'*'lj'*')“k""ll)b _ e(li+lj+lk+ll)a)

S s

i P Ou Ry
eATPeATQeATR]_‘d'LE > Qi Ry
L ij

k1

A’i + 2,1 + lk + 2.1
to obtain
AvE(x)=wMy 2.57)
where
M ==Y SHy -3 > Sy (2.58)
k k1
with
[Z(UTe ,),(UTg)k + z(UTg) (U7 )k ](UTXe 1), +2(U7Xes )i(UTg)k (uTe 1),
S153)= l l li+lj+2’k : :
. [n](UTXeI)I(UTe] ),- +2(UT Xe; )i (UTh)k(UTeI)I(UTeI )j 05
ikl — Ai+A;+A,+A '
i J k l
where
n=4(U"¢, )1E (UTh)k + Z(UTh)i (UTeg)k. (2.60)
Defining 73 and 7 arrays by
1)~ S
g 2.61)

4 1
15 = X wisii)
i

results in a polynomial expression in the transformed states y. The gradient of the Lyapunov

function AVI (x) becomes
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i)=Y Dy + X3 Ty imen 2.62)
Jj ok j k1

The coefficients Tﬁz) form a 6 x6x 6 array and T%) a 6 x6x6x6 array, and can be calculated off-

line. The nonlinear contribution to the control uyonLINEAR 1S given by

unonuivear =1 OJ-R™')3BTav](x)

2.3 Simulation Results

This section presents simulation results using the nonlinear H,, control law for agile missile
flight control. In forming the nonlinear H,, control law several assumptions were introduced in
modeling the missile nonlinearities. It is important to present these modeling assumptions so that it
is clear what nonlinearities are present in this problem.

In the earlier versions of this research [Ref. 4 in Chapter 1], we modeled the missile's
aerodynamics as a linear function that was constant with angle of attack. In the results presented
here this assumption has been removed, and the missile's aerodynamics are nonlinear.

The TVC deflection sin(S7yc) in the & equation has been replaced by 18,. This linearity

assumption for the actuator deflection is appropriate here because the TVC actuator is mechanically
limited to 10 degrees deflection. The actual TVC flow angle does not deflect the same amount as
the nozzle angle due to losses in the nozzle. The losses further limit the actual vector angle,

reducing it to approximately 8.5 degrees (in this application). Over this limited range the
sin(87yc) is linear.

The nonlinearity f; described in Eq. (2.43) is modeled using a third order polynomial. This
additional modeling assumption adequately captures the nonlinearities introduced by the sin(@)
and cos(c). Modeling the nonlinearities using polynomials is an important aspect of our solution
approach. The polynomial models make it significantly easier to solve the integral expressions for
the characteristic equations.

The aerodynamic data used in this study was obtained from high angle-of-attack wind tunnel
measurements in the McDonnell Douglas Polysonic Wind Tunnel in St. Louis using a 1/4 scale
model. Figure 2.1 illustrates the wind tunnel test hardware.
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Installation Drawings

« MDC Has Built A New High AOA Support Mechanism
« AOA Up To 90° In The MDA Polysonic Wind Tunnel (PSWT)

~ « Includes Roll Control Pod

LI S L Y U L Sl d VT,

Y/ /Y, /9999?§§§§9§4644@5?222%?%977222222

Figure 2.1 Wind tunnel test hardware.
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Figure 2.2 shows the pitching moment coefficient as a function of angle of attack at Mach
numbers of 0.45, 0.85, and 1.2. As the velocity of the missile changes the aerodynamics
characteristics also change. Note that at Mach 0.45 the missile becomes unstable at approximately
30° AOA. As the velocity increases this transition region moves to lower AOA's.

Figure 2.3 illustrates the effect of aerodynamic fin deflections on the pitching moment. At low
AOA's the fins provide adequate control power. As AOA increases, the acrodynamic controls are
no longer effective. Note that there are sign reversals in the fin stability derivatives at the higher
AOA's. By using thrust vectoring the problem of sign reversals at high AOAs is eliminated.

The missile autopilot commands an actuator that deflects the TVC nozzle. For the IATVC [10]
actuator design used in this study (common actuator drives both the TVC nozzle and aerodynamic
fins), the aerodynamic fins deflect 3 times the amount of the TVC nozzle.

The actuator command contains a linear part, from the gain scheduled linear H,, design, and a
nonlinear part that is proportional to AVI (x). Only the first approximation is computed in the
calculation of AV,{ (x). Computing the first approximation requires solving the integral in Eq.

(2.48), where the stable matrix F and the positive definite symmetric matrix X are provided by
the gain scheduled linear H., design (for the linearized system), and z(z) is the linear solution of

the characteristic equations z(z) = ef'x.

In this application £ has distinct eigenvalues, so that if F is diagonalized as £ =UAW, then
the integral expression in Eq. (2.48) can be solved by representing the matrix exponential with its
modal expansion. This makes this integral expression a combination of polynomials weighted by
exponentials, which are easy to integrate.

The gradient of the Lyapunov function AVz(x ) is solved for using Eq. (2.62). Figure 2.4
illustrates the calculations used in computing AV? (x). FORTRAN subroutines were developed to
implement these algorithms. (Documentation for this code is contained in Appendix A, with the
software given in Appendix B.) Note that a linear gain schedule is calculated off-line and stored
for use in computing the linear part of the control law.

Figure 2.5 shows our MATRIXx implementation of the nonlinear H,, control law. The super
block has 8 inputs (¢, altitude, Mach number, & command, pitch rate, TVC nozzle deflection,
TVC nozzle rate, and fuel ratio (err: 1=full, O=empty)). The fuel ratio is used to schedule the gains
with changes in the center of gravity. The control is the TVC nozzle deflection command
computed by the autopilot. This command has 3 terms:The trim deflection; the linear H,,
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Figure 2.2 Pitching moment coefficient as a function of angle of attack.
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Figure 2.3 Effect of aerodynamic fin deflections on the pitching moment.
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Figure 2.4 Calculations used in computing AVZ(x).
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contribution; and the nonlinear H,, contribution. The trim deflection is calculated in the Trim
Scheduler superblock. The linear H., contribution is calculated by looking up the linear gains in
the Hinf Alp IATVC Gain Scheduler superblock, shown in the figure. The nonlinear H., software
described in Figure 2.4 is implemented in the User Code block User 001.

Figure 2.6 shows an animation of the simulation results. The figure shows an F-15 launch of
the agile missile with missile trajectories for a 45 and 60 degree o command. The simulation stops
when the missile's heading has changed by 180 degrees. The goal is to perform this heading
change maneuver as quickly as possible.

Figure 2.7 shows time histories of important simulation variables. The a response follows the
command as desired. The actuator time histories are well within the deflection and rate limits for

the actuator.

Figure 2.70 shows the contribution to the control made by solving for the nonlinear part
AV,{ (x). This contribution is small when compared to the magnitude of the linear control. Since

the linear gains are scheduled every 10 degrees AOA, the nonlinearities are captured (and
adequately compensated for) in the linear gain table. This leads to a possible conclusion that if the
linear design adequately covers the nonlinearities, then the contribution to the control by AV{ (x)

will be small. This is the case here.
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Figure 2.6 Animation of simulation results.
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Figure 2.7 Time histories of important simulation variables.
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Figure 2.7 (Continued) Time histories of important simulation variables.
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Figure 2.7 (Continued) Time histories of important simulation variables.
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Figure 2.7 (Continued) Time histories of important simulation variables.
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Figure 2.7 (Continued) Time histories of important simulation variables.
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2.4 Conclusions and Future Research

A solution approach was presented for solving the Hamilton-Jacobi-Isaacs partial differential
equation that arises in nonlinear H,, optimal control problems. The solution approach using
successive approximation was applied to a missile flight control problem with six state variables.
Although somewhat complicated, the state feedback control algorithms are implementable using
standard software techniques. This solution approach has produced reasonable algorithms for
solving the nonlinear partial differential equations that arise in the study of nonlinear H., optimal

control problems.

Nonlinear simulation was used to test the algorithms, and resulted in good performance. TVC
nozzle deflections and rates commanded by the autopilot are well within limits. The angle of attack
time history tracked the command very well.

Software for implementing the successive approximation solution procedure was developed
that can calculate any number of successive approximations (only the first was used in this study).
This software was documented (Appendix A) and is contained in Appendix B for application to
other nonlinear control problems. The software can be obtained electronically by contacting the
author at McDonnell Douglas (wisek@mdcgwy.mdc.com).

Future research will include a more detailed investigation into the use of gain scheduling to
account for nonlinearities versus using our nonlinear H,, algorithms.
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3 Variable Structure Control Of Missiles

Recent studies have indicated that missile agility can provide a decided air superiority advantage
when applied to close-in, low speed, high angle of attack, engagement scenarios. However, at
low dynamic pressures, aerodynamic controls are not effective, and therefore missile agility
requires some form of alternate control, such as reaction jets or thrust vectoring. The use of
Reaction Control Valve (RCV) actuators and Thrust Vector Control (TVC) actuators can be
challenging due to system nonlinearities resulting from hardware limitations. In particular, TVC
and throttleable solid fuel propellant RCV systems have hard thrust magnitude and thrust rate limits
as well as other actuator nonlinearities, while low cost RCV actuation may be provided by on-off
valves which require discontinuous control.

This research addresses flight control system design for an agile missile with throttleable
RCVs, with a focus on maximizing performance during an agile turn to the rear hemisphere. A
pitch rate command autopilot topology was selected for this maneuver. In order to achieve the
desired performance, the autopilot must be capable of very rapid command following. For a linear
quadratic performance objective, this criteria requires a small weighting on the control variable,
often called the "cheap control" optimization problem.

It is well known that the optimal feedback control for the "cheap control” Linear Quadratic
Regulator (LQR) problem results in loops with high gain [1]. In this work we examine the "cheap
control" H,, optimal control problem, and apply the resulting near optimum feedback control to the
agile missile autopilot design problem. For comparison, the "cheap control” LQR problem is
reviewed, and the near optimum regulator results are used to design a second missile autopilot for
comparison.

In Young et al [2], it is shown that all high-gain systems can be represented as singularly
perturbed systems, and therefore can be decomposed into slow and fast subsystems. Moreover,
by the method of Chow and Kokotovic [3], the near optimum LQR design is a composition of the
slow system regulator and the fast subsystem regulator. An advantage of the Chow and Kokotovic
approach is that the controller can be designed independent of the singular perturbation parameter
€, therefore avoiding the problem of solving stiff differential equations. Recent developments [6]
show that H_, optimal control problems and Linear Quadratic (LQ) differential games are closely
related, and thus LQ game theory results can be used to develop worst-case H,, optimal
controllers. Moreover, in [4], this relationship is extended to develop a method to design worst
case H,, optimal controllers for singularly perturbed systems. In [4], Pan and Basar derive
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conditions under which a composite controller exists and can be constructed independent of the
singular perturbation parameter €. However, the construction of the best approximate controller is

more involved than the sum of the slow and fast controllers as in the LQR case.
3.1 High Gain Feedback Systems With Disturbance Terms

In this section we extend the results in [2] to show that under the standard assumptions, the

high gain feedback system with disturbance term can be decomposed into slow and fast
subsystems, where the fast transient occurs in the range of By and the slow motion is confined to

the nullspace of C.

Consider the linear time invariant high gain system of the form

X = Agxg + Bou + Dyw
w= Cle (3. 1)
u=gCyxy

where g is the high gain factor, the state X eR", the control ue R™, and the disturbance

we RP. Let € be a small positive scalar such that, €= }é, so that as g approaches infinity, €

approaches zero. By substituting for # and w in Eq. (3.1), and rewriting (3.1) in terms of €,

results in

ety = (e4g + ByCy + €Dy )xp (3.2)
We now show that if

rank(ByC,) = rank(CyBy) = m (3.3)
and if the nonzero eigenvalues of ByC, have negative real parts

Re(A;(ByCy)) <0 i=1,,m (3.4)

then the dynamical behavidr of (3.1) is characterized by a fast transient to an O(€) neighborhood
of Coxo =0, followed by a slow motion in this neighborhood.

The system in Eq. (3.2) can be converted into the standard singularly perturbed form by letting
x=Txg 3.5)

where the similarity transformation in Eq. (3.5) is two successive transformations, given by,
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x=Mxy (3.6)

-

x=Ix

The first transformation matrix M is applied to Eq. (3.1), and decouples the high gain control u
from the first (n— m) states resulting in the system

X = A + Apxg + Dyw

) (3.7)
Xy = A21x1 + A22X2 + Bzu + Dzw

where

A A

MhgM™ =[1421 Azz] Mo =[0 Bg]T

T
aM=[Cy Ca] CM'=[Cy Cn] MDy=[Df D]

Note that the control # only enters into the x, dynamics. In Weil and Wise [7] we extended this
approach to include a slow control (not high gain) that enters only into the x; dynamics. This was

used to blend aero controls (slow) with RCV controls (fast).

Next, substitute the feedback control u=gC,M 1 into Eq. (3.7). The transformation matrix I"
in Eq. (3.6) represents the coordinate change given by

Ml

(1, 0O
=] fnm ] (3.8)
| Co1 Cp
and transforms Eq. (3.7) into the system described by
z=Fpz+ Fppoy+ Gw
1nz+Fy+G (3.9)

ey =¢eHz+ (C2BO + 8H2)y + eGow

where
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Fi1 = A — ApCiCan
Fip = AyC3)

Hy =(Cy1A11 +CapA01)CaCor + Hy
Hy = (Cy1412 + Codn )Cr

G =D

Gy =Cy1Dy +CpDy

This transformation (Eq. (3.8)) separates the slow (z) and fast (y) states, however, they still
remain coupled. To eliminate the slow state from the y equation, the following transformation

n=y+eéelz (3.10)
from Pan and Basar [4] and Kokotovic and Haddad [5] is applied to Eq. (3.9) to obtain

2= (Fyy — eF1a(Lo + €E¢))z + Fion+ Gw

. ) ) (3.11)
e =(CyBy + eHy + (Lo + €E¢ )Frp 11+ (66 + €%(Lo + EE, )Gy )w

where

L=(CyBy +&Hy) " H
=Ly +€E, (3.12)

-2
Eg =(C2Bo) ~HiF11 +O(€)
The slow and fast eigenvalues of the system in Eq. (3.11) are given by
A5 =2j(Fi1)+0(€) j=1+,n—m
-1 .
A =7 (2,(CyBy) +0(e)) i=1+,m

(3.13)

By choosing £ sufficiently small, (with the assumptions in Egs. (3.3) and (3.4) satisfied), the fast
subsystem is asymptotically stable.

Equation (3.13) clarifies the two time scale property of the high gain system (3.2). The fast
dynamics decay exponentially on the time scale %’ while the slow dynamics evolve on the time

scale z.
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Asymptotic stability of the fast dynamics is guaranteed by Eq. (3.4). Asymptotic stability of
the slow dynamics (assuming that the disturbance is independent of the state) requires that the
eigenvalues of F}; reside in the open left half of the complex plane.

With the disturbance w given by Eq. (3.1), Eq. (3.9) becomes

Z= FHZ + Flzy
B . (3.14)
ey=¢€Hyz+ (C230 + 8H2)y

where

Fiu=Fy +GI(C11 - C12C2_21C21)

Fip = Fia +GICioC33
; -1
Hy=H+ Gz(Cu - C12C22C21)

Hy = Hy + GyC1pCyy
By applying the transformation in Eq. (3.10), the equivalent expression for Eq. (3.11) is
i= (Fu ~ ey (Lo + el?g))z +Fpom

(3.15)
877 = (C230 + 8]‘72 + 82([0 + EEg))n

where
L=(CoBy +ethy) Ay
=L +eE,
Eg =(C2Bo) *FhFyy +0(e)
The eigenvalues of Eq. (3.15) are given by

25 = A;(Fyy) +0(e) j=1rwn=m (3.16)
M = (1(CoBo)+ (@) i =1

which shows that the disturbance does not affect the fast subsystem eigenvalues, however, the
stability of the slow subsystem is dependent upon the disturbance feedback gains.
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It has been shown that the eigenvalues of the high gain system (with w=0) are the
transmission zeros of the open loop system with output y = Cpxo. Therefore, the eigenvalues of

Fy; are the transmission zeros. This result is used in [2] to develop a process to calculate
transmission zeros. In the case where w = Cyxg, (Eq. (3.1)), the eigenvalues of Fy; are the open

loop transmission zeros of with the output y = Cyxp.

The results of [2] show that T decomposes the system in Eq. (3.1) (with w=0) into the null
space of C, and the range space of By. Our results, with w = Cjx(, show that the system

# =Ty (3.17)

is given by Eq. (3.15). Partitioning the transformation matrices as

M -
M=[M;] M1=[s; ] (3.18)

where M, SlT are (n—m)xn, and M, SzT are m X n matrices, the vector x can be written as
x0 = (51~ 205 Cn )2 + Bo(CoBo) (3.19)
where 0=C,(S; - $2C33Ca1 ).
Let
N=S8-5C3Cy (3.20)
then CoN =0, y=Cyxg, and z = Mjxg, where M;By =0.
3.2 Linear Quadratic High Gain Feedback Control
Consider the system and performance index described by
Xog = Agxg + Bou

J= %T(xg Oopxp + ezuTRu)dr (3.2D)
0

It is well known that high-gain feedback control can result from the linear quadratic (LQ)
performance index having a small penalty, £>0, on u. This so-called "cheap control”

optimization problem lightly penalizes the control, resulting in rapid regulation of the states
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weighted by the penalty matrix Qy. O'Malley and Jameson [1] (among others) have studied the
"cheap control" problem and have produced detailed results for the case when Bg QpBp >0. As

noted in [2], this assumption implies the condition in Eq. (3.3), and therefore the optimal "cheap
control” state regulator possesses the two time scale property demonstrated in the previous section.
Moreover, a near optimum high-gain state regulator can be designed (independent of €) using the

method of [3]. Instead of solving the full order LQ optimization, the following two reduced order
regulator problems are solved.

The Slow Regulator Problem:

Consider the slow system dynamics given by
.fs = Al X5 + Alzus (3.22)

with performance index

|
T=3

© ey §

(% @11 + 2] Qs +u{ Qo e (3.23)

The Fast Regulator Problem:
Consider the fast system dynamics given by

.X.'f = Bzuf (3.24)

with performance index
T T
=% [(xFOuxs +ulRus Jit (3.25)
0

where Ay, Ay, B,, are obtaned using the transformation M as in Eq. (3.7), with the slow state
vector xg an (n—m) vector, Xy up, ug are m vectors, and Qy; are the submatrices of

T .
0= (M'l) QOM_l where M is as in Egs. (3.6) and (3.7).

Lemma 3.1:
If the pair (4g,Bp) (Eq. ((3.21)) is stabilizable, then the pair (A}, A7) is stabilizable
Proof: (see [2])
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Lemma 3.2:

If the pair (A, By ) is stabilizable, the pair (4;;,Y) is detectable, where

Y'Y =01 - 0120270h (3.26)
and Bg QoBp >0, Then, there exists a unique stabilizing solution P of the Algebraic Riccati
Equation (ARE)

T
- - T 14T
Ps(Au - A12Q221Q17§) + (A11 - A12Q221Q1T2) Ps+Y'Y - PeApOpAipPs =0  (3.27)
and the optimal control for the slow subsystem is given by
—_n=l{T T
u =-073(0h + A12Ps)xs (3.28)
=—RsXs
Proof: (see [2])

The optimal feedback control for the fast subsystem is given by

=—RBP
“ BoFpxs (3.29)
=—Kgxs

where Py is positive definite and given by

Pr =Wl (wouw) *w! (3.30)

1/2

with W = (B,R'B] )
The composite control (combining slow and fast controls) is given by

u, =—g(KKsx; +Kpxp) (3.31)

Theorem 3.1:

Under the conditions of Lemma 3.2, the composite control % is near optimal in the sense that the

performance J of the system described by Eq. (3.7) using (3.31) is 0(82) close to its optimal

performance.
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Proof: (see [2]).

Notice that the stabilizability and detectability conditions required for the solution of the
standard LQR problem are replaced by the conditions of Lemma 3.2. Moreover, the stabilizability

and detectability conditions are equivalent to the existence of an unique positive semidefinite
solution Pg to Eq. (3.27) that renders Ay — Aj2K; Hurwitz. To regulate the output y = Coxp, Q

is chosen as CJC,. If rank(C,)=m, then the near optimal control calculated by letting
¥s =CaXs, ¥5=Capxs in Egs. (3.22) through (3.25), respectively, is 0(32) close to the
optimal control. The detectability condition of Lemma 3.2 is replaced by the stabilizability of
(A11,A12) which implies that Re(ﬂ, (A“ - A12C2_21C21)) <0.

As noted in [2], the solution to (3.27) is Py =0. Therefore,

ug =033 0% (3.32)

Therefore, the transmission zeros of the system in Eq. (3.7) with output y = C;xy must be in the

open left half plane.
3.3 High Gain H., Optimal Control

In this section the results of Pan and Basar [4] are used to show that high-gain feedback control
can result from the optimization of the system in Eq. (3.1) with respect to a quadratic cost function
having a small penalty € on u, and disturbance bound ¥ >> &. Consider the performance index

Jy =% [ (s 0oxo + 2" Ru—y*w whic (3.33)
0

For £>0 and small, y>> ¢, and Bg OBy > 0, the system is high gain and possesses the two

time scale property previously discussed. As a result, a near optimum regulator can be designed as
the composition of the slow subsystem H,, state regulator, and the fast subsystem LQ regulator

(since no disturbance term appears in the fast dynamics).

Let ’}'*(8) denote the smallest value of ¥ >0 under which the differential game (Eq. (3.1) and
Eq. (3.33)) has a bounded upper value when the control u is a closed loop state feedback control
policy. Then, for €>0 and 7> 7" (¢), it is known [4] that this differential game has a saddle

point solution given by
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u* = —S_ZBgR_IZxO

. (3.34)
w" = y2D§ Zx,
where Zis the solution to the ARE described by
4§z + 249 - 2(7BoR B - 772 DoDf Jz+0p=0 (3.35)

Assume that the system (Eq. (3.1) has been transformed into the form given in Eq. (3.7). Using
this same partition, define A, Q, B,and D as

A=[A” Alz] ___[Qu le] B=[0} D=[Dl] (3.36)
A1 Ap O On B, 0

then Eq. (3.35) becomes

ATz +7A- Z(e'zBR‘IBT - y‘zDDT)Z +0=0 (3.37)

Let Z be partitioned as

Zj 8212}
z=| A (3.38)
[8212 €2y

By substituting this into Eq. (3.37) and letting & — 0, the following algebraic equations are
obtained:
T - T —1pT T
AlZyy + Zydy + Y 220Dy Zyy + 011 = ZBR T B Zin
Zi1A + 01y = Z12ByR "B Zp) (3.39)
On =ZnBR "B 7y
Solving for Z,, and Zj, results in

Zyp =W (Wopw) !

I T
Ziy = (Zi1A + 02 ) ZW ™2

(3.40)

- 172 o . . .
where W = (BZR 132T ) . Substituting these expressions into the Zj; expression results in
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(Au - A12Q521Q1Tz)T211 +Z1 (Au ) Qﬁ) -

(3.41)
- - ~1,T
211(A12Q221A1T2 -y72DyDf )Zu +011 - 01202012 =0
Now, define the set
I'={7>0:Vy >7 Eq. (3.41) has a bounded solution Z;; >0, and
S = 41y - 41207300 - (4053 Al - v 2DiDf )7y dsstable ] (3.42)

Let y* =inf(yeT), then a solution to Eq. (3.41) exists for all y> y*. Notice that I" is
nonempty since ¥ can be chosen sufficiently large. That is, in the limit as ¥ — o, Eq. (3.41) —
Eq. (3.27). Therefore, given that Lemma 3.2 holds for all y > y*, a near optimum high gain state
feedback regulator can be designed by solving the following two reduced order regulator (one H.,,
one LQ) problems.

The Slow H_, State Feedback Problem:

Using Eq. (3.7), with u defined in Eq. (3.1), and £ =0, we obtain the slow system dynamics
Xg = Apyxg + Apus + Dywyg

-1 (3.43)
u; =—CpCryxs

where

Xs = X1
Xy =x(e=0)
Us = Xo

The slow cost function is

T T TAT T 2. T
Jy, =% (xs O11%s + X5 Qyolh + Uy Qjoxs + s Opothg — YW ws)dr (3.44)

O — 8

Notice that u; depends only on the slow state. Therefore, in contrast to [4], there is only one slow

game to be considered. To convert Eq. (3.44) to the standard form with no crossterms, define
i = 0% . 3.45
Uy = ug + 027 Q12X (3.45)

Substituting Eq. (3.45) into Egs. (3.43) and (3.44), yields
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. -1 AT —_
Xg = (All — A0 QIZ)xs + Ayl + Dywy
(3.46)

T - = -2 T
'H( Q1%+ Qplls — 1 ws Ws)dT
0
Solution of this standard LQ differential game depends on the solution of the following ARE

(A11 - A12Q2_21Q12) Zy+Z (Au - A12Q22Q12) (A12Q22 A -5 DlDlT)Zs +0y1 =0 3.47)

Define
Iy ={y">0:Vy >y Eq. (3.47) has a bounded solution Z; >0, and
- - 27 AT
Re(A(Au — 4070 —(A12Q221 Afy -y 2Dy )Zs)) < 0} (3.48)
Let
Ys =inf(yeTy) (3.49)

Then, the transformed game has a bounded upper value if y> ¥, and only if y 2y, [6]. For
y> ¥, let Z be the unique nonnegative definite solution of Eq. (3.47). Then, there exist

feedback saddle-point policies for the transformed game, given by

- _1,T
usy = -0 Aj2ZsX;s

- (3.50)
Ws, =7 Dy Zgxg
Transforming Eq. (3.50) back into the original coordinates yields
=1{ AT
Us, =70 (QIZ + Algzs )xs
=—K1sxs (351)

Wsy =—K)Xs

The Fast H_ State Feedback Problem

Define the fast state, x £ the fast control, u £ and the fast disturbance, w > @s
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Xf =X3 —fz
up = €u (3.52)
Wf =0

Then the fast subsystem dynamics and the associated cost function are given by

Xg = Byug
Ty, = %T(X}szxf + uJ].:Ruf)dr (3.53)
0
Solution of this fast LQ problem defined by Eq. (3.53) depends of the solution of
0n = 2B R B Z (3.59)
which is given by
Zp =W Woyuw) 2w .55

1/2 ..
where W = (BZR_lBg ) . The corresponding feedback controller for the fast subsystem is given
by

uf = —BZTR—IZfo

=—Kyrxs

(3.56)

Let y > ¥, the high gain composite controller is obtained by substituting x¢ from Eq. (3.52) and
X, from Egs. (3.43) and (3.45), which results in
P |
Uu=-£& (Kllesxl + Kle2)

(3.57)
=—(Cayx1 + Cox3)

Moreover, the composite control is near optimal in the sense that for all ¥ > 7, there exists an
€y >0 such that for all €> &y, the disturbance attenuation is attained for the full order system.

This is proven, as in [4], (using the Implicit Function Theorem), by showing that the elements of

the solution to Eq. (3.37), Z;1, Z13, and Zy,, each have an asymptotic expansion in €. Using
this result, and applying the composite control to the system in Eq. (3.7), it is shown that J,, has a

finite cost for y > 7.
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3.4 High Gain Autopilot Design and Simulation Results

In this section linear and nonlinear simulation results are presented which represent the
application of near optimal high gain H,, theory to missile autopilot design. The resulting H,,

angle of attack (AOA) command autopilot is also compared to the high gain LQ design.

The missile configuration chosen for this initial study uses reaction jet thrusters (RCVs) for
control. The pitch plane autopilot design model (using Eq. (3.1)) is given by

r T
xo={fea @ a Tres] (3.58)
1 0 0 _0
0 Zy Z, Zrcs 9 2
AH=(0 M, Mq Mpcs By=| 0 || Dp= M,
0 0 0 “}/chs %RCS 0

evaluated at the trimmed flight
TRIM

where the Z; represent the partial derivatives a%x

i

. The state feedback control
TRIM

condition, and the M; represent the partial derivatives of 9%

i

law is given by

TRCSC = —;12- Coxg (3.59)

The autopilot was designed at the following flight conditions:

a=[0 10 --- 90] (deg)
V=[500 1000] (ft/s)
h=[10 30] (Kf)

The performance weighting matrices were chosen so that the linear AOA step response had a
rise time less than 400 milliseconds. The linear system AOA step response for the flight condition
o = 40°, V = 1000 ft/s, with A = 10 Kft is shown in Figure 3.1.

The gain scheduled control law (gains in Eq. (3.59)) was simulated for a 180° turn to the rear
hemisphere maneuver, assuming that the missile (main engine) was boosting at 5000 Ibs, and that
the disturbance w is a white noise process representing vertical wind gusts. The nonlinear planar
simulation vertical velocity (w in body coordinates) responses for both the LQ and the H,

autopilots are shown in Figure 3.2, with and without wind effects. For illustrative purposes, the
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wind gust magnitude was chosen to be larger than what is typically encountered in order to test the
disturbance rejection capabilities of the autopilots.

Figure 3.3 shows the nonlinear AOA responses for both autopilots tracking the AOA
command. Note that the H,, autopilot exhibits better command following in the absence of the

disturbance. The command following of both autopilots is degraded as a result of the wind
disturbance. However, the H,, autopilot does a better job at rejecting the wind disturbance.

The RCV control activity for this maneuver is shown in Figure 3.4. Notice that H,, autopilot
exhibits more control activity than the LQ autopilot. The large spike in the H,, simulation RCV

thrust response is the result of a significant increase in the magnitude of the disturbance input
matrix D; between flight conditions, resulting in a large change in the controller gains (due to the
gain scheduling). This problem could be addressed through a redesign of the H,, controller at the

higher AOA flight condition with modified design requirements (same design requirements were
used at low and high AOA in this study).

Figure 3.5 shows the downrange versus crossrange trajectories for both autopilots flying
through the turbulence. The turn performance of the H,, autopilot is slightly better than the LQ

autopilot.
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Figure 3.1 Linear angle of attack step responses.
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Figure 3.2 Nonlinear planar simulation vertical velocity responses.
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Figure 3.3 Nonlinear planar simulation angle of attack time histories.
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-63-

jet thrust responses.

McDonnell Douglas Corporation



Report MDC 95P0058 Nonlinear Control of Missiles

1.78

1_76 ......... SRR -

174 |+

172

7

17 |

Altitude (nmi)

1.68

166 | i e

PRNAE U DU VUL NS WS Y WA SRS U SRS OV TN VOIS SRR SN SV VN SN UG [N N N NN S SO U Y S N S N S R S
1.64

Range (nmi)

Figure 3.5 Nonlinear planar simulation downrange versus crossrange results.
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3.5 Conclusion and Future Research

It has been shown that linear time invariant high gain feedback systems with additive
disturbance can be represented as singularly perturbed systems, and therefore can be decomposed
into slow and fast subsystems for control law design. Assuming that the disturbance is a linear
function of the slow state, it was shown that the fast subsystem dynamics are unaffected by the

disturbance. However, the stability of the slow subsystem is dependent upon the disturbance
feedback gain. The solution to the near optimal high gain H,, state feedback problem was then

shown to be equivalent to the solution of a slow H,, state feedback problem and a fast LQ state
feedback problem. For sufficiently large ¥, the conditions for the existence of solutions are
shown to be equivalent to the existence conditions for the high gain LQ problem. Moreover, the
optimality of H,, composite control system with respect to the H,, performance measure is
equivalent to the optimality of the LQ composite control with respect to the LQ performance
measure, for € sufficiently small. Finally, nonlinear simulation results showed that command
tracking performance of the high gain H,, autopilot was comparable to the high gain LQ autopilot.
However, for the 180° maneuver in the presence of turbulence, the H,, autopilot exhibits slightly

better disturbance rejection properties.

Future research needs to be directed at the main issues in applying VSC sliding mode control
law design and analysis to missile autopilot problems, that is sliding mode existence, asymptotic
stability of the sliding mode, and reachability to the sliding mode. Conditions for evaluating these
features are well known for linear time invariant (LTI) systems [4], and readily support control law
design using LTI system models with gain scheduling.

Modeling a missile's dynamics using LTI system models naturally leads to a gain scheduled
control law. This is typical of how industry designs missile control laws. Applying VSC to these
LTI models, as demonstrated in the work performed here, leads to a gain scheduled sliding
surface, with the gains interpolated between design points. Verification of the design relies on
proof by nonlinear simulation.

Another approach to the VSC missile autopilot design problem is to design a nonlinear control
law. This requires designing a nonlinear sliding surface, s(x), for the nonlinear system

x=f(x)+g(x)u

= tgesn(s() 40

-65-

McDonnell Douglas Corporation




Report MDC 95P0058 Nonlinear Control of Missiles

Asymptotic stability of the above system is based upon the following fact: If the sliding mode is
asymptotically stable, then the closed loop system is asymptotically stable if and only if the sliding
mode is reachable. The goal is then to determine s(x) to insure both asymptotic stability of the

sliding mode and reachability to the sliding mode. An approach to address nonlinear sliding mode
stability is outlined below. Methods to evaluate reachability represent new research.

The condition for sliding mode stability is based upon passivity and detectability of the system
as follows. If the system is passive with a positive definite c! storage function V(x), then the

sliding mode is asymptotically stable provided that it is detectable. By definition, the system given
by

x= f(x)+gx)u
y=8(x) (3.61)

u=-¢(s(x))
is passive if there exists a function V:R" — R, with V(x)>0, V(0)=0, and V(x)e Cl, such
that

V(x(@®) - V(x(,)) < J Y ($)u(s)ds (3.60)

fo

A condition for determining passivity of a given system is the Kalman-Yakubovitch-Popov
T .
(KYP) Lemma which. Let s(x)= (LgV) where V(x)20, V(0)=0, and V(x)e Cl. Then, if
L,V <0, then the system described by Eq. (3.59) is passive.

Some of the issues involved with using this approach are verifying the existence of V(x),
determining V(x), and determining u as a function of s(x). Nonlinear optimal control theory

could potentially be used to address be these issues.

Detectability of the system in Eq. (3.59) is evaluated by examining the set

§= {""’L?‘If,[f,---[f,g] V&)= 0}

where m is the rank of L,V. If S = {0}, then the system in Eq. (3.61) is detectable.

One of the major problems in performing nonlinear control law design is developing a
representative design model. The aerodynamic coefficients are typically given in a table lookup
form as a function of Mach, control effector position, body rates, and wind angles. Fitting a
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model to this data can require an extensive amount of work. In addition, there are significant
uncertainties in the wind tunnel data due the measurement instrumentation. These uncertainties and
high alpha phenomena such as asymmetric vortex shedding can further complicate the modeling
process. In addition, nonlinear control law design techniques are more complicated and the
performance payoff (over gain scheduled designs based upon LTI models) is not clear. On the
other hand, nonlinear analysis techniques are always required and may help quantify the
performance advantages when using nonlinear control techniques. To compare the VSC gain
scheduled control law to a VSC nonlinear control law, further research is needed to develop
reaching conditions for the nonlinear system, and in combining these conditions with the sliding
mode asymptotic stability conditions obtained via the KYP Lemma (assuming detectability).
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4 Nonconservative Robustness Tests For Mixed Uncertainties

Robustness analysis is important because of the uncertainty present in engineering design
models of physical systems. This uncertainty comes from many sources such as parameter value
uncertainties, neglected and/or mismodeled dynamics, time delays, and neglected nonlinearities.
These modeling errors fall into two broad categories: parametric (real) and dynamic (complex)
uncertainty. A more realistic description of these errors is one that includes both categories, which
is referred to as mixed modeling uncertainty. Feedback control is used to achieve performance in
the presence of such uncertainties.

Contrary to the 1970's where control research dealt with systems with known mathematical
models, control engineers today must design for performance and understand the impact of
uncertainty. The pioneering work of Zames, Doyle, Stein, and Safonov has led to a framework in
which robustness analysis and synthesis, for restricted types of uncertainties, is now possible.

There are many techniques available for robustness analysis. These stability tests focus on
either parametric or dynamic uncertainty, and can be categorized as polynomial tests, Lyapunov
tests, zero exclusion tests, and singular value based tests. When analyzing a missile flight control
system, robustness to both parametric and dynamic uncertainty is of critical importance.

The research presented here in robustness analysis is motivated by a general industry need to
guarantee stability and performance robustness for control systems with mixed uncertainty, and
secondly, by a need to reduce the costs associated with designing these control systems. Missile
flight control systems use gain schedules designed from linearized models to compensate for
highly nonlinear aerodynamic characteristics, undesirable gyroscopic coupling, and the large range
of flight conditions encountered over the flight envelope. Automation of this task using robustness
theory is shown in Figure 4.1.

Using the approach illustrated in Figure 4.1, feedback gains are calculated at each design point
using controller synthesis software. Robustness analysis software is used to determine the next
design point in the flight envelope, guaranteeing uniform stability margins as well as performance
between design points. This loop is repeated until the flight envelope is covered by the gain
schedule. Nonconservative evaluation of the flight control system robustness to mixed uncertainty
is required in order to automate the process.
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Streamline Autopilot Deviopment Cycle

MISSION Robustness Theory Used To Guarantee Stability Margins
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Figure 4.1 MDC automated flight control system design.

Results using this process have been published in Wise [1] using the structured singular value
U (using complex p for mixed uncertainty) robustness analysis, and are shown in Figure 4.2..
This approach led to large gain tables in which the numerical values of the gains changed very little
between design points (due to the conservatism of complex u). The missile's aerodynamics
become unstable at 13° AOA. As shown in the figure, the gain tables became very dense in this

region with very little change in magnitude.

Stability robustness to real parameter uncertainties have been analyzed using the deGaston-
Safonov real multiloop stability margin [2], with significant improvements in the algorithm made
by Sideris [3] in removing the frequency search. For dynamic uncertainties the most popular
method of analysis is Doyle's structured singular value [4-6]. This pioneering work has been
extended to address mixed (real and complex) uncertainty analysis problems in Young [7].

The uncertainties in a typical feedback control system may arise from real parameter variations,
neglected/mismodeled dynamics, or combinations of both (mixed uncertainty). The stability
analysis model is shown in Figure 4.3. The uncertainties in the system are isolated and placed into
a diagonal matrix A. The transfer matrix M describes nominal system characteristics which have
been stabilized by a compensator. Thus, for 4 =0, the system is stable. Let
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Figure 4.2 Pitch autopilot feedback gains.'
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UNCERTAINTIES

A

STABLE LOOP
TRANSFER MATRIX

Figure 4.3 AM uncertainty analysis model.

A=di . 8
iag & d (4.1)
M(jw)e C™"

Stability of the system described by Figure 4.3 is implied by the det[I — AM]#0.

The algorithm presented here offers the analyst an alternative approach (other than u) for
analyzing stability robustness to mixed uncertainties. The idea is to determine the smallest set of
uncertainties that makes the return difference matrix singular, with the search performed over the
parameter space that models the uncertainties. Although the algorithms require 2" operations at
least once (n = number of uncertainties), the approach is still reasonable (for small to medium sized

problems) for many engineering problems of interest to the aerospace industry.

The stability robustness analysis problem is solved by first forming an analysis model (AM) in
which the uncertainties are isolated into the A matrix. Next, a variation polynomial a(6) is

formed by expanding the determinant of the return difference matrix for this analysis model
(det[I - AM] = a(5)). The robustness test determines what uncertainties 4 make the return

difference matrix singular (i.e. def[I—AM] = 0) by computing the zeros of the variation
polynomial a(8). The zeros of a(6) are found by using a conjugate gradient algorithm
minimizing the magnitude squaréd of the polynomial a(8), combined with a simulated annealing

algorithm for starting the conjugate gradient optimization.
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4.1 The Variation Polynomial

The variation polynomial a(8) is formed by the determinant expansion of det[I — AM], where

the diagonal matrix A models mixed uncertainties and the nominal matrix M is stable. The zeros
of the variation polynomial a(6) determine when the mixed uncertainties destabilize the system.

Our objective is to form the polynomial a(d) at each frequency and solve, by optimization, for the
destabilizing uncertainties.

The following three steps are used to form the AM analysis model from which we compute the
variation polynomial a(6):

i) build a signal flow graph (or block diagram) model with scalar uncertainties.

i) form the AM analysis model using appropriate software isolating the uncertainties into a
diagonal matrix A (this step can be accomplished using MATRIXx , CTRL-C, Matlab).

iii) compute the variation polynomial a(8) coefficients from a(8) = det[I — AM].
Step i)

The AM robustness analysis model is formed by introducing scalar uncertainty models into a
signal flow graph model of the control system, and manipulating the signal flow graph. All
parametric (real) and dynamic (complex) uncertainties are modeled using scalars, and the resulting
analysis model always has a diagonal matrix A.

Figure 4.4 illustrates this point by showing two signal flows graph models of the longitudinal
flight control system of a bank-to-turn missile. Figure 4.4a was created from transfer functions
whereas Figure 4.4b was created from the state equations.

Parametric uncertainties in real parameters p; can be modeled using a multiplicative uncertainty

modelp; =p j(l + dp j). Dynamic (complex) uncertainties can be modeled using complex scalars
¢; and also can use a multiplicative uncertainty model ¢ =c(1+ 5c,-). (Additive uncertainties are

also modeled in this framework.) These parametric and dynamic uncertainties are modeled using

signal flow graph branches and are inserted into the system signal flow graph, as shown below.

> . % .
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Autopilot M 1
o

b) Signal flow graph from state equations.

Figure 4.4 Signal flow graph models for a pitch plane dynamics and autopilot.

Step ii)

The matrix M is computed by breaking the signal flow branches at each variation and forming
input/output nodes as shown above. The elements of M are the transfer functions between the
input and output nodes of the signal flow graph. The motivation for using signal flow graph
branch models is that multi-parameter coefficients can be expanded using branch gain models, and
variations can be introduced into the individual parameters. For example, the missile stability
derivative Z,, (body lift due to angle-of-attack ¢) can be expanded as
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which allows for simultaneous variations in the nondimensional stability derivative C,,,, dynamic
pressure O , mass m, and velocity V (in a real parameter uncertainty analysis problem). This
signal flow graph modeling technique removes any restrictions on how the variations can enter into

the model. A FORTRAN implementation of our signal flow graph model decomposition uses
Cramer's rule (Klein [8], Wise [9,10]) to form the transfer function matrix M(j@). We have also

implemented this approach in Matlab, CTRL-C, and Matrix-X. .

The AM analysis model that results from our signal flow graph decomposition is highly
structured, and can be used in analyzing specific uncertainty models, when norm bounded

uncertainty representations are available, or to guarantee uniform stability margins over a range of
real parameter variations. The mixed uncertainties dp; and 6c; model parameter variations that

appear linearly-fractionally in the system model. Our research also applies to systems whose
parameters do not appear linearly-fractionally in the plant model, such as the parameters ¢; in

complex exponentials e /9 (time delays added at the plant inputs and outputs).

Step iii)

The expansion of the det[] — AM] forms an affine polynomial in the parameter variations dp; and
dc;. Consider, for example, $) = 2 real parameter variations and Sy = 1 complex variations, with

n= Sy + S, = 3 the dimension of A. The variation polynomial has 2" coefficients a; € C and is

formed as follows for this example:
A =diag[8py Spy cy] (4.2)

a(8) = det{I — AM]
= ag + a0py + aOpy + a30cy + a4 0pOpy + as0p6¢c) + agdpr6cyy + ag dp10p,6¢;

This can be written as the inner product of two vectors by factoring out the coefficients a; into the

vector a and placing the parameter uncertainties into the vector 6 as follows:
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T
def[l -AM]=[ag - a7]l 8py dpp O - 5p18pa6¢i ]
=a’s (4.3)
= a(8)

The 2" x 1 vector a is computed at each frequency by mapping the vertices of a particular
parameter space hypercube into the complex plane using the det[I — AM]. By stacking each

n
mapped vertex into a vector v, veC 2 , we can relate v to the coefficient vector using
v="Pa (4.4)

where each row of the matrix P is & evaluated at a vertex of the hypercube. By a special choice
of the parameter space hypercube we can design the matrix P to be orthogonal (this applies to both
real and complex uncertainties). This lets us invert the 2" x 2" matrix by taking its transpose,
allowing us to easily solve for the coefficient vector ain Eq. (4.4).

a=PTy (4.5)

For real parameter variation problems, we have used Eq (4.4) in computing the deGaston-
Safonov real multivariable stability margin. Some very interesting observations resulted, and are
presented in the following numerical results subsection on parametric uncertainty. Faced with an
analysis problem in which the uncertainties did not appear linearly-fractionally in the model (time
delays), we extended this robustness analysis method to include complex parameter variations.
These results follow in the numerical results subsection on dynamic uncertainty.

4.2 Computing the Zeros of the Variation Polynomial

In the general case of n parameter variations (complex parameter variations or mixed real and

complex parameter variations) optimization techniques are employed to compute the zeros of the
variation polynomial a(8). The objective function used is the magnitude squared of the variation

polynomial. The zeros of a(8) are found by using a conjugate gradient algorithm minimizing the
magnitude squared of the polynomial a(8), combined with a simulated annealing algorithm for

starting the conjugate gradient optimization. The analysis goal is to find the smallest set of
parameter uncertainties that make a(8) = 0.

There are many techniques available to find the minimum value of an objective function. Of all

these methods the conjugate gradient method [11-14] is the simplest.
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The problem of minimization can be visualized as a problem in hill climbing [11]. The bottom
of the valley can be found by starting at some initial point and climbing in the downward direction
until a minimum point is reached. The climbing procedure is efficient if the direction of climbing is
the direction of steepest descent. A detailed algorithm for the steepest descent method is given in
[11]. The steepest descent method can be modified to take the advantage of mutually conjugate
directions of descent [12]. This reduces the convergence difficulties of the steepest descent
method presented in [11]. Most of the conjugate gradient algorithms presented in [11-13] deal
with objective functions which are quadratic. Conjugate gradient algorithms used to optimize non-
quadratic functions are presented in [14].

The zeros of a(8) can be found by using a conjugate gradient algorithm for non-quadratic
functions as presented in [14]. Since a(8) is complex, the objective function to be minimized is

written as follows
F=(a"6)(a"s) (4.6)

Where a(8) is the complex variation polynomial and (0)* is it’s complex conjugate. When F
becomes zero a(8) is also zero.

The objective function F presented in Eq. (4.6) is one equation in n unknowns. Also, there is
more than one set of parameters that make the polynomial zero. The set of the smallest
uncertainties that make the polynomial zero is to be found. This type of combinatorial optimization
problem can be solved using an approach called “simulated annealing”. Simulated annealing is
analogous to the physical process of annealing of solids [15].

Annealing is a process in which a solid is heated in a heat bath until the solid melts. Then the
temperature of the heat bath is reduced gradually until the particles arrange themselves in the
ground state of the solid. At each temperature value T, the solid is allowed to reach thermal
equilibrium. This thermal equilibrium is characterized by the Boltzmann distribution which is
stated as below:

—E; ) 4.7

KBT

Pr{X=i}= Z(lT) exp(

Where X denotes the current state of the solid and Z(T) denotes the partition function [15], which
is defined as follows
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n
—E:
Z(T)= Zexp(——’) (4.8)
. K BT
Jj=1
where E; is the energy, KB is the Boltzmann’s constant, and T is the temperature of the heat bath.

The analogy between the simulated annealing and the physical annealing process is that optimal
solutions of a combinatorial optimization problem are analogous to the states in a physical
annealing process. Similarly, the cost of an optimal solution is analogous to the energy of each

state.
Software Implementation

The software tool developed under this research (called ROBUSTC) builds upon the
FORTRAN program called ROBUSTR published in Wise [9, 10]. ROBUSTR was developed to
calculate the deGaston-Safonov [2] real multiloop stability margin. It is applicable only to LTI
control systems with real parameter variations.

In implementing the calculation of the real multiloop stability margin the variation polynomial
a(6) was formed [16, 17]. This polynomial is the expansion of the determinant of the return
difference matrix I — AM for the system shown in Figure 4.3. It can be written as an inner
product of two vectors, and can be used to replace the matrix determinant calculations required to
map the parameter space hypercube into the Nyquist plane when computing the real margin. This
approach led to a significant reduction in the CPU time required to compute the real margin using

the deGaston-Safonov algorithm.

Figure 4.5 illustrates the software development process that was used to develop ROBUSTC.
Prior to testing ROBUSTC, the individual subroutines underwent unit testing. The conjugate
gradient subroutine used in ROBUSTC (called FRPRMN) went through an extensive testing
procedure comparing it with another well documented conjugate gradient subroutine called
VMCON (used at MDC). An analytical expression for the gradient is used in ROBUSTC. The
analytical gradient was compared with numerical approximations of the gradient, for small changes
in the parameters, with both methods giving identical results. After these individual subroutines

were tested, the overall program was assembled.

Figures 4.6 through 4.8 show a flow charts for the FORTRAN program ROBUSTC. Any
analysis model can be input to ROBUSTC by first forming a state space model that describes the
M matrix in Figure 4.3, using either Matlab, CTRL-C, or MATRIXx. The analysis model should
be validated prior to building the state space mod7eé for ROBUSTC. A Matlab procedure file was
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Figure 4.5 ROBUSTC analysis software development.

written which takes any M -matrix quadruple, (Am,Bm,Cm,Dm), and writes the FORTRAN code

that inputs the model into ROBUSTC. This code is then compiled and linked to the ROBUSTC

code.

Simulated annealing finds the global minimum by jumping around in the parameter space (due
to the high temperatures) and evaluating the cost at each jump. The smallest cost and parameters
associated with that cost are stored for retrieval. The algorithm stops when the process has
sufficiently cooled, as specified by the user.

In our application of simulated annealing, the annealing algorithm is used to start a conjugate
gradient algorithm that minimizes the variation polynomial (F in Eq. (4.6)). The objective
function is not a convex function, so local minima can result, depending upon where the algorithm
is started. The annealing algorithm, by jumping all over the parameter space for the uncertainties,
and starting the conjugate gradient algorithm at each jump, finds the smallest set of destabilizing
parameter uncertainties.

An algorithm to implement the simulated annealing is presented in [15]. A flowchart for the
implementation of this algorithm for our problem is given inFigures 4.7 and 4.8, and is explained
as follows. The function FRPRMN uses a conjugate gradient algorithm to minimize the variation
polynomial objective function F. The input argument to this function is some starting value
DELTA where the conjugate gradient algorithm is going to start. This function returns two
arguments; 1) the local optimal solution of F which is denoted as DELTA*; and 2) the optimal
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value of the function F which is denoted as FVAL*. To find the smallest set of destabilizing
uncertainties, the 2-norm of the optimal solution DELTA™ is calculated, which is denoted as COST;

The function logsched returns a zero or a one depending on the input arguments. This output
of this function is used to adjust the temperature, cooling the process when the cost is reduced..
The flow chart for logsched is given in Figure 4.8. The function rand generates a vector of

random numbers.

The development and validation of the analysis models prior to using ROBUSTC is a key step
in process. Experience has shown that it is easy to make modeling mistakes when analyzing

complicated flight control problems containing a large number of uncertain parameters.
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Figure 4.6 Flow chart of ROBUSTC.
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Figure 4.7 ROBUSTC simulated annealing implementation.
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RETURN TRUE

RETURN TRUE

Figure 4.8 Logsched flow chart.
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4.3 Numerical Results
Parametric Uncertainty (Real)

For problems with only real parametric uncertainty the robustness analysis problem can be
solved by the deGaston-Safonov real multivariable stability margin [2]. We have implemented Eq
(4.3) in FORTRAN software for computing the real margin k,,. To start, the algorithm requires
mapping the 2" vertices of the parameter space hypercube into the Nyquist plane at a specific
frequency. Each vertex of the cube defines a A and is mapped by the det[I —kAM]. This
requires evaluating the determinant of a n X n matrix 2" times. Once this is complete, Eq. (4.5) is
used to solve for the variation polynomial coefficients. During the search for the largest k, Eq.
(4.3) replaces the determinant calculation with a vector inner product. In every application of this
approach, we have noticed that a majority of the coefficients a; were zero, and remain zero for all
frequency. For the remaining frequencies (during the frequency sweep), only the nonzero
variation polynomial coefficients are calculated. This greatly reduces the size of the variation
polynomial that must be considered, and the size of the vectors used to compute its magnitude.

We have incorporated the variation polynomial approach along with a polynomial-time convex
hull algorithm into a generic real parameter variation analysis program called ROBUSTR (see
[9,10] for details on this software). Table 4.1 lists CPU times using a Vaxstation 3200
workstation for several missile autopilot analysis problems. In an analysis of a roll-yaw missile
autopilot with # = 9 uncertain real parameters, only 32 of the 512 variation polynomial coefficients
were nonzero. This reduced Eq (4.3) to an inner product of two 32 x 1 vectors, greatly reducing
the computational burden. This important observation, an implementation, makes the real margin

algorithm implementable for n-large problems.

ROBUSTC has been applied to several test problems (generally low order) where analytical
results can be computed. Figure 4.9 shows a block diagram and signal flow graph model for a real
parameter variation analysis problem. These results can also be calculated using ROBUSTR which
implements the deGaston-Safonov real margin algorithm. The closed loop characteristic equation

for the system shown in Figure 4.9 is given by

53 +1052 +150(1 + Sk )s +960(1 + Sky ) =0 (4.9)
Substituting s = j with @ =1 rad/s results in

950 + 9608k, + j(149 +1508k; ) =0 (4.10)
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ROBUSTR CPU USAGE

UNCERTAIN | MODEL| NODE CPU TIME TO ANALYSIS N
AUTOPILOT |PARAMETERS| INPUTS | EQUATIONS | FORM MODEL CPU TIME Al e;'t’h
(n) (np) (ng) (SEC) (SEC) gorithm
PITCH
PITCH-RATE 4 4 13 0.6 43
COMAND 4 7 23 2.9 161
PITCH 4 4 18 1.6 44 11
ACCELERATION 4 6 21 43 110
COMMAND 4 8 28 10.5 229
ROLL-YAW 4 4 40 57.5 38 7
ROLL-RATE 5 5 40 78.0 164  (0.04 HRS) 22
COMMAND 6 6 40 96.5 289 (0.08 HRS) 33
7 7 40 117.5 1033 (0.28 HRS) | 157 (0.04 HRS)
8 8 40 136.2 3093 (0.86 HRS) | 458 (0.13 HRS)
9 9 40 156.4 13683 (3.80 HRS) | 2039 (0.57 HRS)
VAX STATION 3200

Table 4.1 ROBUSTR CPU usage.
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Real Parameters-Only Example

R s? C
+ s%+9s 24+ 150(1+ 8kys + 960(1+ 3kJ

Figure 4.9 Real uncertainty 2-parameter test problem.

The parameters 8k; and Sk, that make the real and imaginary terms zero are:

Sk, =—0.993333
Sky = —0.989583

(4.11)

These same results are computed by ROBUSTC.
Dynamic Uncertainty (Complex)

We have also used our signal flow graph modeling technique to develop analysis models for
parameter variations that do not appear linearly-fractionally in the model, such as parameters
¢; €[-n, n] that appear in ¢ /% . For a time delay uncertainty, the multiplicative uncertainty
model is ¢ /% =1+6;. Solving for the uncertainty §; yields &; =1—¢ /% The SSV u
produces conservative results when applied to this problem. The multiplicative uncertainty
e %1 (disk of radius one centered at -1) is conservatively covered by a disk (disk of radius 2),
as shown below.
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The analysis problem that motivated this applied research was an automatic landing control
system for an Unmanned Air Vehicle (UAV). The current production UAV is landed by an
operator using a double-joystick (throttle plus control surfaces), which requires extensive training.
In addition, some mission scenarios include multiple UAV's which increases the operator work
load. An AUTOLAND system would reduce training costs, improve the landing success rate, and
reduce operator work load. In the AUTOLAND control system, telemetry data from the vehicle
along with ground radar data is processed in a ground control station and the flight control signals

are sent back to the UAV. The analysis question was to determine if the transportation delays
destabilize the UAV, and how large could they be?

In addition to this motivation, plant-input and output stability margins can be computed using
the gain and phase variation model kl-e"jd"' inserted in each input and output channel. Gain
margins would be evaluated with the ¢; set equal to zero, and phase margins would be evaluated
with the gain variations ; set to unity. However, the ¢; do not appear linearly-fractionally in the

model.

Following these motivations, consider the missile pitch autopilot phase variation analysis
problem shown in Figure 4.10. Using a multiplicative uncertainty model for each e /9, as

shown in Figure 4.10, our approach yields the following variation polynomial:
a(8) = ag + age 191+92) 4 g i (B1745) (4.12)

where the five coefficients in this variation polynomial that are not listed were identically zero for
all frequency. The zeros of a(8) occur at the ¢;'s that destabilize the system. Figure 4.11 shows

the frequency response of the coefficients a; .

For §; =¢ /% the sum of the coefficients @ in Eq. (4.12) always equal unity. At high

frequencies, the variation polynomial cannot be made equal to zero by adjusting the parameters ¢,
¢, or ¢3. This is evident from Figure 4.11 as the magnitude of a4 and a5 go to zero.
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Figure 4.11 Pitch autopilot variation polynomial coefficients versus frequency.
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Figure 4.12 shows a surface plot of the magnitude of Eq. (4.12) varying the parameters ¢;
grouped as ¢ + ¢, and ¢; + ¢3. This figure was created for the variation polynomial coefficients
evaluated at ® = 32.93 rad/s. This figure shows that the magnitude of the variation polynomial is
not a convex function of the ¢; (since ¢; repeats itself every 27 radians). If a conjugate gradient
algorithm is used to find the minimum magnitude of a(5), the minimum computed by the
algorithm will depend upon where the optimization is started. As Figure 4.12 shows there are an
infinite number of minima. Fortunately, we are interested in the smallest set of destabilizing
parameters, which creates a problem with a unique answer.

Figure 4.13 is a Nyquist plot of the loop transfer function at the plant input. The classical
phase margin is 46.32° at a loop gain crossover frequency of 32.93 rad/sec. If a parameter space
hypercube is created for the ¢; (i=1,2,3), there will be 23 = 8 vertices of this cube. A vertex of
this cube maps into the point F; in Figure 4.13.

In the deGaston-Safonov real stability margin calculation, a straight line in the real parameter
space maps into a straight line in the Nyquist plane. Thus, a convex hull formed from the mapped
vertices contains the entire image of the hypercube. This is not true for complex uncertainties. As
Figure 4.13 shows, a straight line in the ¢-parameter space maps into an arc in the Nyquist plane.
The convex hull formed from the mapped vertices will not contain the mapping of the edges of the
hypercube, let alone the entire image of the hypercube. This precludes the use of the same analysis
software for both types of uncertainties.

Our optimization results, which minimize the magnitude of Eq. (4.12), are shown in Figure
4.14 and indicate that no combination of the ¢;'s will destabilize the system at low and high

frequencies. Only in a small interval near the loop gain crossover frequency can this system be
destabilized. This is shown in Figure 4.14. Figure 4.14 is a plot of the minimum variation
polynomial magnitude as a function of frequency.

A multivariable phase margin can be defined as follows:

opy = ;nin{(p,- e[, 7], —Pmax < O; < Opax | det][l - AM]#0 Voo (4.13)

max

This is equivalent to defining a hypercube in the ¢; parameter space, expanding this cube, and
guaranteeing that all combinations of the ¢; interior to this cube result in a stable system. Figure
4.15 shows the destabilizing phase variations plotted as a solid curve in the 3-dimensional ¢-
parameter space, along with the largest cube tangent to the curve. Using Eq (4.13), we have ¢py
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=23°. Note that using Eq. (4.13) does not result in the same “smallest destabilizing uncertainty”

as using the 2-norm of the parameter uncertainties in a vector.

If the missile autopilot loop gain transfer function L(s) is formed at the actuator input, the
transfer function is

L(s) =& (M Ky (a5 + € R (5)4(6))
¢ ¢ (4.14)

= OO ()R ()5 )+ € TR ()£

Note that the only nonzero coefficients of a(8) correspond to the coefficients of a(8) that multiply

¢ J91%92) g ¢ (#1493) 1t tumns out that the smallest set of destabilizing ¢ s, defined by the

point tangent to the cube in Figure 4.15, predict the classical phase margin shown in Figure 4.13.
That is min(¢y + ¢, ¢, +¢3) = 46.32°, indicating agreement with the variation polynomial

prediction of stability.
To further demonstrate our approach, the variation polynomial approach is presented for a roll-
yaw autopilot analysis problem. Like the pitch autopilot analysis problem, the problem is to place

a complex exponential ¢ 79 in each input and output channel, and determine the smallest set of
¢'s that can destabilize the missile. Figure 4.16 shows a signal flow graph with the phase

uncertainties added at the inputs and outputs of this missile system. In this example, the smallest
destabilizing uncertainties are found by stacking the ¢'s in a vector, and using the 2-norm of that

vector as a measure of size.

Figure 4.17 shows the singular values versus frequency of the loop transfer function matrix
without the phase uncertainties. The loop gain crossover frequency, defined to be the largest
frequency where the maximum singular value of the loop transfer function matrix is unity (0 dB),
is near 18 rad/s. Our results will show that it is in this frequency region, the region near the loop
gain crossover frequency, that the parameter uncertainties can destabilize this system.

The variation polynomial for this system is
a(8)=a’6
Where a’ =[ay as a7 a9 a1; @5] and
5T=l:1 ¢ i($2+44) e—j(¢2+¢3) ¢ /(91+94) o H(91+93) e‘f(¢l+¢2+¢3+¢4)] (4.14)
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Only S of the 24 = 16 polynomial coefficients are non-zero. The remaining 10 coefficients of a
are zero for all frequencies and all angles-of-attack.

Figure 4.18 shows the absolute value of the non-zero coefficients versus frequency. Figure
4.19 presents the minimum value of the objective function F =(aT8)(-)* as a function of

frequency. Note that only in a small region near the loop gain crossover frequency does the

objective function actually become zero. At the other frequencies no combination of the phase
parameters destabilize the system (change the number of encirclements of the det[] — AM b

Figure 4.20 shows the 2-norm of the ¢’s (2-norm of [¢1 ¢y ¢3 @4)) returned from our

algorithm at the same objective function values as shown in Figure 4.19. Only in the frequency
range between 4 and 20 rad/s can the system be destabilized by these phase variations.

A simple mixed (real and complex) uncertainty model has also been used to test ROBUSTC.
The model contains one real parameter uncertainty (6k) and one complex parameter uncertainty

(e"j ¢), and is shown in Figure 4.21. ROBUSTC correctly computed the gain and phase margins

for this SISO control system model.
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Figure 4.12 Variation polynomial magntiude at © = 32.93 rad/s.
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Figure 4.13 Acceleration autopilot Nyquist analysis.
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Figure 4.14 Pitch autopilot variation polynomial magntiude.
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Figure 4.15 Largest stable parameter hypercube.

Figure 4.16 Roll-Yaw Signal Flow Graph Analysis Model
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Figure 4.17 Roll-yaw loop gain singular value frequency response.
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Figure 4.19 Roll-yaw variation polynomial magnitude.
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Figure 4.20 2-Norm of the destabilizing ¢ parameter vector.
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Mixed Real-Complex Parameter Problem (Gain/Phase Margin Example)

R 20(1+5k) e c
+ 834+ 7s 2+ 10s

ar t at

s34+ 75 2% 108 + 20(1+ 8k)el® =0

Analytic Results
Phase margin: 35.79 deg @1.5224 rad/sec
Gain margin: 10.88 dB @ 3.1622776 rad/sec

ROBUSTC Results
@ o = 3.1622776 rad/sec:

Sk = 2.5000
et = -1.7e*

@ o= 1.5224 rad/sec:

5k = 9.6e7
elt= 6246 rad

Figure 4.21 Gain and phase margin example.
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Simulated Annealing Trade Study

In our application of simulated annealing, the annealing algorithm is used to start a conjugate
gradient algorithm that minimizes the variation polynomial. The objective function is not a convex
function, so local minima can result, depending upon where the algorithm is started. The
annealing algorithm, by jumping all over the parameter space for the uncertainties, and starting the
conjugate gradient algorithm at each jump, finds the smallest set of destabilizing parameter
uncertainties.

Simulated annealing finds the global minimum by jumping around in the parameter space (due
to the high temperatures) and evaluating the cost at each jump. The smallest cost and parameters
associated with that cost are stored for retrieval. The algorithm stops when the process has
sufficiently cooled, as specified by the final temperature.

The choice of the final temperature effects the final outcome of the analysis. If the final
temperature is specified at too high a level, the global minimum may not be found. Figure 4.22
illustrates trade study results varying the simulated annealing final temperature. Shown in the
figure is a plot of final temperature versus CPU time, analyzing the pitch autopilot analysis
problem given in Eq. (4.12). The shaded region illustrates the numerical value (for this problem)
where the algorithm generated identical final values for the minimum. If a final temperature was

set higher than this value the smallest set of parameters (using the 2-norm) was not found by the
algorithm. Thus, to us simulated annealing effectively, low final temperatures must be used.
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Figure 4.22 Simulated annealing final temperature versus CPU time.
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4.4 Conclusions

Our results show that the magnitude of the coefficients of the variation polynomial vary rapidly
within a certain range near the loop gain crossover frequency. From the optimization results it is
clear that the objective function takes on it’s minimum value, which can be considered as zero, in
this same frequency range indicating that the system is destabilized by the complex parameter
variations. The simulated annealing/conjugate gradient algorithm gives the exact parameter values
that destabilize the system.

These results show that it is possible to develop parameter space based analysis tests for
dynamic uncertainties, including the class of problems in which the parameters do not appear
linearly-fractionally in the analysis model. Thus, the variation polynomial approach gives an exact
estimate of complex parameter variations for the system to stable.

Although this algorithm suffers from an exponential explosion in calculations (2" at least once)
we have found that the computation times are very reasonable for problem of interest in aircraft and
missile flight control.
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Appendix A
Nonlinear Hoo Software Documentation

The software that generates the nonlinear H,, control is applicable to nonlinear systems of the

form

J'c=Ax+Af(x)+G1u+G2w
z=Cx+Dju+ Dyw

(A.1)

where Af(x) is O(xz). For the nonlinear system described in Eq. (A.1), the HJI equation for

optimal state feedback nonlinear H., control is
_ _ _ T
AT cx-xTcTsSRTISTCx+ Vi Ax+ Af(x)- BR IsTcx)-1viBR BTV, =0 (A2)

where
B=[G; G,]
S=[D D]
g=|P{D1  DID2
DiD; DiDy -l

and 7 is the attenuation level given by a linear H,,, gain scheduled control design.
Let V(x) represent a Lyapunov function of the form
V(x)=xTXx + AV(x) (A.3)

with AV(x)= 0(x3). Using this definition for V(x), substitute the gradient V(x) into the HJI

equation in Eq. (A.2). The result is

A (XA+ATX+0+ XRX )x + 2x7 XAf + AV, Fx+ Af|+ 44V, RAVE =0

where
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A=A-BRISTC
0= cT(I —SR"IST)C

Let X be the solution to the (linear) Algebraic Riccati Equation (ARE):
XA+ATX +0+XRX =0. (A.4)

Then

xT[g(A +ATX +0+ Xé}ng +22 XAf + AV, [Fx+ A [+ FAV,RAVE =0 (A5)
=0

which simplifies to
22T XAf + AV [Fx+ Af |+ L AV RAV] =0. (A.6)

Solving this PDE for AV, and combining with the linear part in Eq. (A.4) yields the optimal state
feedback nonlinear H,, control given by

u(x)=1 0](—R"1){%BT(2Xx +av])+sTcx) A7)

The characteristic equations for the solution of the PDE in Eq. (A.6) are

%: ﬁz-&-%ﬁp-«» Af(2)
d‘ (A.8)
d—’t’ =—FT7-24fT Xz - AfT p—2X 41 (2)
Solutions to these characteristic equations can be represented in integral form as
Ft) _ af FT tf F P
2(t)=e " x— pIe Tq(z,p)dr+J(e_ *(4f(2)+ pg(z. p)) - pe Tq(z,p))d’t
‘ 0 (A.9)

. _fT, % T
+pe t_[eF *q(z,p)dr

t
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x = state deviation
from trim

e 74 (af +pq)

o +ha :
Y3 @ + x+j~dr
- 0
F pos
t

evaluate
atr=0

T ; o
iAVx = nonlinear contribution
T
to V

Figure A.1 Computational flow computing AV};

p(t) = —eFTt Jeﬁrfq(z,p)dr
t
where
q(z,p) =~ 4f; (2)(2Xz + p) - 2XAf (2) (A.10)

and p satisfies the Lyapunov equation Fp+pF’ =4R. It was shown earlier that iterations
defined by evaluation of the right hand side of the integral equations defines a local contraction

mapping.

AVI is then given by
avT = p(0) (A.11)

and the feedback control is given by Eq. (A.7).

-108-

McDonnell Douglas Corporation




S RN L R L} L | S

Report MDC 95P0058 : Nonlinear Control of Missiles

The computational flow corresponding to the iterations can be diagrammed as shown in Figure
A.1. This structure is independent of the specific form of the nonlinearity Af. The iteration is
initialized at z=x, p =0, at the start of operation, and can run continuously thereafter. The

changing value of x then drives the system to provide changes in AV?;.

Alternatively, the computation can be initialized to zero at each time and a preset number of
iterations can be generated. The nonlinear calculation needed in the iterative procedure is

considered next.

The nonlinear calculations for Af and —q are problem dependent. We show the computation
of Af and —q for two examples, a 2nd order system with quadratic nonlinearity, and then our
sixth order missile pitch autopilot design problem. These examples illustrate how the software
calculates the parts of the integral expressions that are problem dependent.

Second Order System With Quadratic Nonlinearity

In this case we consider
=[a] ar)=|ad (A.12)
Tz 10 .
Define e} = [(1)], we can express Af as

Af(z)=¢ (elT z)(elelT )z

(A.13)
= (elT z)Gz
_{a 0 _
where G = 0 ol If we let w=2Xz+ p, then
—q=2XAf + AfTw
(A.14)
Asz = 26‘1 (elT z)ele{
and
T  _ T T
Afz w= 26‘1(8} w)elel z
, (A.15)

= (elT w)Hz
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Figure A.2 Calculation of the nonlinearities for the 2nd order problem.

where H = [261 8] A computational flow for calculating Af and —g for this example is

shown in Figure A.2.
Sixth Order Missile Pitch Autopilot Problem

Consider the missile autopilot problem discussed in Section 2.2. For this problem we have

ZT=[Zl %) Z3 Z4 I 26]

gl=[c, 0 cg 00 0]
Kl =[c3 0 ¢4 0 0 O
=[1 0 0 0 0 0]

(A.16)

and that

Af(z)= (CIZ +Cyz123 + C3Z% +C421 23)

- (7 (7 )
= (57 72K o

To compute the gradient of Af with respect to the state vector z, Af,, differentiate the above

expression. This yields
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Figure A.3 Calculation of the nonlinearities for the 6th order missile problem.

o7.@)=e((¢7a)el +(el o)™ +2(a")ef )+ el 47 )
(A.18)
A (2)= (gTz)elelT + (elT z)gelT + 2(hTz)(e1T z)elelT + (elT z)thelT

Multiplying by w results in
Asz (2)= (g z)(el w)el + (e z)(elT w)g + Z(hTz)(e z)(e )61 + (e z)z(elT w)h
= (e w)(elg ) + (e w)(gelT )z+ 2(e z)(e w)(elhT)z + (e z)(e w)(helT )z (A.19)
(elT gT + geg )(elT w)z + (ZeIhT + hey )(e z (e ) |
An implementation of this calculation is shown in Figure A.3.
Software Implementation

As discussed in Section 2.2, a modal representation of the matrix exponentials is used in the
integral equations (for z and p). This representation generates linear combinations of

exponentials with vector polynomial coefficients. The FORTRAN implementation of the

successive approximation represents these linear combinations of exponentials with vector
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polynomial coefficients using a pair of arrays. The coefficients are stored in a 3-dimensional array,
with the exponents of the exponentials stored in a 1-dimensional array.

For example, consider the following linear combination of exponentials with vector polynomial

coefficients

o[- B

This would be represented by the arrays P and PEXP as

PLL]=1  P[L12]=2
P211]=0 P[2,1,2]=3
PlL21]=2  P[12.2]=0
PR21]=1 P[2,2.2]=0 (A.21)

PEXP[1]=-1 PEXP[2]=-3

The inclusion of the powers of ¢ in the coefficients is required to handle multiple eigenvalues and
to handle integrals of expressions (Eq. (A.9)). The range of the indices will grow as the
computation proceeds, because of the multiplications due to the nonlinearities and the matrix
exponential gains shown in Figure A.1. The ranges of the indices must be monitored during the

computation to anticipate excessive array lengths.

Procedures for clustering nearly identical terms and removal of insignificant terms must be
implemented so that the length of the arrays does not grow too large. These thinning operations
occur immediately after the addition and multiplication operations.

The matrix exponential el is represented by a linear combination of exponentials with matrix
polynomial coefficients (interpolating polynomials). This is a fixed length linear combination. It

. _gr _fT =T
also has to be updated as F changes. Computation arrays for e Ft = ¢=F"t and el ! are not

needed since their coefficients and exponents can be inferred from the el arrays. Calculation of
the matrix exponential as arrays is needed for our solution approach, and is shown in Figure A.1.
This calculation is accomplished once the eigenvalues of F are provided using the Cayley-

Hamilton Theorem.

The real symmetric matrix J is also needed. This requires the solution of the nXn Lyapunov
equation

p+pFT =1R (A.22)

NOf—
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where n is the dimension of the state. This solution is accomplished by transforming Eq. (A.22)
into a set of n(n+1)/2 linear equations in the components of p and solving by the LU-

decomposition.
The solution of the Algebraic Riccati Equation (ARE)
XA+ATX+0+XRX =0

is also needed for the nonlinear computations (shown in Figure A.3). Our implementation
considers the matrices A,B,Q, R as inputs and includes the eigenvalue computations on-line. This
approach was used because we have found that the eigenvalues and eigenvectors for H.., problems

are usually too sensitive to succumb to interpolation.

Figure A.4 summarizes the computations made implementing our successive approximation

solution to the integral expressions.

The following 2nd order example is used to further illustrate the computations. Consider the
2nd order example (quadratic nonlinearity in the first state equation) with linearized matrices

[-4 0] pey. e[l O] 5-[14 2] ._[1
A= —1]’3—12”3-[0 —1]’Q— 2 2]’3‘-[2]

and ¢; = 0.03. From the linear H,, ARE we have X = [% ﬂ, which gives F =[_01 _12], with

= L
the matrix /3=|:214 2;‘1' The matrices G=[O'83 8] and H=[0‘86 8] The matrix
24 A

exponential eﬁ ! is given by
ot = [(1) (1)] ot +[8 —11] o2t

The software uses a vector exponential string Z to represent z(r) and Af(t) and Q to represent
—p(t), 2Xz(t)+ p(z), etc.

The duplication is advised because in most problems the array length can become very large
and one must economize on memory space. The nonlinearity Af(z) is represented by the array
DF . Only one temporary array (TEMP) is used. For some applications this may not be sufficient
so that other temporary arrays must be declared in those cases.
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The software uses various subroutines to combine strings of exponentials or to integrate them.
Routines ADD and MULT are used for the parts of the software which are independent of the

nonlinearity.

Subroutine ADD multiplies a vector string A(z) by a real constant matrix C(z) time a real
scalar coefficient coef , and adds it to a string B(r), and returns the result in the string B(1).

Figure A.5 illustrates the computational flow for ADD.

B + B(:= B(D + coef * C;‘ AQ)

+

A T' AlD) o

Figure A.5 Computational flow for subroutine ADD

The subroutine MULT multiplies a vector string B(z) by a matrix string A(z), and returns the
result in the string B(?).

B . B(D:= Al * B(»)

Figure A.6 Computational flow for subroutine MULT

The routine gives the options of multiplying by A(z), A(-1), AT(I), or AT(—I) so that only the
one string A(t) needs to be defined in the software. Figure A6 illustrates the computational flow

for MULT .

-116-

McDonnell Douglas Corporation




TN 4 WS

S 2 WS 42 TTINR 42 UNTIERR 40O TERR 42 EEEEER 2 W TR 4 40 BN 2SR 2B 42N $EEERS 2w

Report MDC 95P0058 Nonlinear Control of Missiles

Subroutine INT _T _INF integrates a vector string from ¢ to e. These integrals are assumed
to exist in our applications because of the stability of F, which is the linear H,, closed loop

matrix. The routine evaluates expressions of the form
m\ AT 7. m\ At
QG+ oy T+ +a, T e dT=b + byt++by, 1t e
t

with Re(1)<0. Differentiating yields

—(al +agt+ -+am+1tm)e'u = (bz +2bst+- -+mbm+1tm_1)eh + il(bl +byt+- -+bm+1t’")e'2"

Equating like powers of ¢ yields
-4 = b2 + )“bl
—ay =2by + Aby
-a,, =mb,, .1 +Ab,
~Apy1 = Abpia
and results in the following algorithm

A 41:=—m1 | A

A= —(ap + may41)/ A
ay:=—(ap +2a3)/ A
ay=—(ay+ay)/ 4
which returns the result in the same array as the input.

Subroutine INT _0_T integrates a vector string from 0 to ¢z, then adds the constant vector x to the

result and returns the result in the same array as the input. The algorithm is derived in a manner
similar to that of INT _T _INF .

IfA#0,
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Q1= A1 1 A

A= (@ + My 1) 1 A
ay:=(ay +2a3)/ 2
a;:=(a +ay)/ 4

If A=0,

Qpy2i= Q1 I Mm+1
Api1:=ap M

ay:=ayl2
QH=q
a1:=0

The vector x is then added to this result.

For the calculation of the nonlinearities Af and Asz (2Xz + p), several utility routines
(MMULT, MULT3, ADD2) are provided which should be sufficient for incorporating most

nonlinearities.

Subroutine MMULT multiplies a vector string A(z) times a constant real matrix C' and returns
the resultin A(r). Figure A.7 illustrates the computational flow for MMULT .

AlY ( )A(t):= c*Alp

Figure A.7 Computational flow for subroutine MMULT

Subroutine MULT3 evaluates a matrix string expression of the form
C(t) = (DTA(I))B(I)
where A(r) and B(t) are matrix strings and D is a real vector.
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Subroutine ADD2 multiplies vector strings A(r) and B(r) by coef4C4 and coefpCp,
respectively, where coef 4 and coefp are real scalars and C4 and Cp are real matrices. The
results are then added and returned in B(¢). Figure A.8 illustrates the computational flow for
ADD?2.

The following calculations continue the presentation of the 2nd order example using the
subroutines described above. This closely follows the programming in the FORTRAN program
NLHINF diagrammed in Figure A 4.

Starting with the following matrices:
io[it ) sera efp o) 0=[# 32}
=003, 6=[0F §]. m=[08¢ §]
xelt <[ ) 5[ 7]
ot =[(1) (1)] ot +[8 —ll] o2

24 24
The numerical value of the state vector is xx =1 2]T

. This is used to initialize z(¢) in the
T

following flow chart. The initial costate is p(f)=[0 0]

The output from these computations are:

3

2Xz+p= [168]6_’ + [_()S]e_m
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The next computation to be performed is the calculations of Af and Af T(2xz+ p) (denoted
nonlinear calculations in Figure A>4). The specific operations are shown in Figure A.2 in the
boxed region. The output Af and Af (2Xz+ p) (from Figure A.2) is

Af = [0. 37] o2 [—0036] e 3 [0.6 2] o4
Afz-‘ (2XZ + p) - [3.3«4]e—2t + [—% 6]8_3t + [086]e—4f

The next computations for this example are illustrated in the following Figure
A ~(y)
e
Af; Toxz+ p) + T }(\ » _(t)

The inputs are Af and Asz (2Xz+ p) and the outputs are denoted z™ (z) and p~(¢), as illustrated

in the figure. Performing these calculations yields:

- =] 0.27 0.66 1.1],-2¢ , [-0.45] -3  [0.78] -4t  [-0.07],-5¢ -0.06] ,-6¢
z (’)—[—0.27] [0336 +[ ]e +[ ]e +[—1.5]€ [091] +[-o.18]e

p (1) = [4 86] —3t+[_ 5076] égg] =5t [ ] —6¢

As shown in Figure A.4, these z™(¢) and p~ () outputs feed the integration routines INT_0_T
and INT T _INF ,tespectively. The output from these integration routines is

0= G B[R S [l
(o oAl
vt =[F Gl + [ + (3348 Jest +[_Taale™™
To compute the nonlinear contribution to the control p* (1) is evaluated at #=0. This yields

avl =p*e=0)=[§36¢
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A(t)

B(D:=coef *Cy * A
+ coefg *Cg * B(2)

Figure A.8 Computatiohal flow for subroutine ADD?2

The contribution to the control is given by

“1pT 4T -1 of1 o'[0.516
Uponlinear = '%R B AVy = —%[ 0 1][0 1] [8_207] =0.258
Program NLHINF
To run this program for your own application you must

1) First declare the following parameters

NSTATE = dimension of the state space

NR = dimension of the exogenous inputs

NM = dimension of the controls

NPMAX = maximum power of ¢ allowed in any string coefficient
NAMAX = maximum number of exponential terms in any string

If either NPMAX or NAMAX are exceeded at any time during running of the program then an
error message will be presented.

2) You must interface with a module which supplies the matrices A,B,O,R.
3) you must specify the number of iterations desired.

4) The nonlinearities must be defined. Expressions must be derived for Af and Af ZT (2Xz+ p),

and these expressions must be programmed using the utility routines MMULT, MULT3, and
ADD?2. Any constant vectors or matrices needed for this must be calculated prior to the iteration
loop. Any of the write statements found in the software can be used to aid program checkout or
can be commented out. ’
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Appendix B
Nonlinear Hoo FORTRAN Software

This appendix contains a listing of the FORTRAN software program called NLHINF. This code
can be obtained electronically by contacting the authors at wisek@mdcgwy.mdc.com.

PROGRAM NLHINF

***********************************************************‘k**********

NONLINEAR H-INFINITY CONTROL *
INPUTS ‘ARE ATILDA,B,R AND QTILDA

FORMS RTILDA

FORMS HAMILTONIAN MATRIX

FINDS THE EIGENVALUES AND EIGENVECTORS

FORMS P MATRIX (SOLUTIONN OF LINEARIZED RICCATI EQUATION)
ATILDA'*P P*ATILDA + QTILDA + P*B*RINVERSE*B'*P=0
FORMAS FTILDA MATRIX

FORMS EXP (FTILDA*t) AND RHOHAT

INCLUDES THE NONLINEAR CALCULATIONS AND

PERFORMS THE ITERATIONS A PRESCRIBED NUMBER OF TIMES
CALCULATES THE NONLINEAR CONTRIBUTION TO THE CONTROL *

**********************************************************************

OO0 000000000
* O % %k O % % %k Ok

INTEGER I,J,K,L,M
INTEGER NSTATES, NPMAX,NAMAX, NY,NR, NM

[eNONORe]

SET DIMENSIONS OF PROBLEM

PARAMETER ( NSTATES=2,NPMAX=20,NAMAX=3000)
PARAMETER( NR=1) ! DIMENSION OF EXOGENOUS INPUTS
PARAMETER( NM=1) ! DIMENSION OF CONTROLS

oo NeKe!

INPUTS

REAL*8 X(NSTATES) ! STATEVECTOR MINUS TRIM STATEVECTOR
REAL*8 ATILDA(NSTATES,NSTATES),B (NSTATES, NR+NM)

REAL*8 R (NR+NM, NR+NM)

REAL*8 QTILDA (NSTATES,NSTATES)

INTEGER ITER ! DESIRED NUMBER OF ITERATIONS

c COMPUTED QUANTITIES
REAL*8 RTILDA (NSTATES,NSTATES)
REAL*8 HAM (2*NSTATES, 2*NSTATES) , WRH (2*NSTATES) , WIH (2*NSTATES)
REAL*8 EIGVH (2*NSTATES, 2*NSTATES)
COMPLEX*8 EIG(NSTATES),Zl (NSTATES,NSTATES), 22 (NSTATES,NSTATES)

REAL*8 TEMPH (2*NSTATES) ! TEMPORARY FOR EISPACK
INTEGER ITEMP (2*NSTATES), IERR ! FOR EISPACK
REAL*8 BT (NR+NM,NSTATES) ! FOR RTILDA CALCULATION
REAL*8 RTEMP (NR+NM) ! FOR RTILDA CALCULATION
INTEGER INDXR (NR+NM),DD !FOR RTILDA CALCULATION
INTEGER INDX (NSTATES) ! FOR FORMING P AND FTILDA

COMPLEX*8 ATEMP (NSTATES,NSTATES), BTEMP (NSTATES) ! FOR LUDCMPC
REAL*8 P (NSTATES,NSTATES)
COMPLEX*8 Z1INV(NSTATES,NSTATES)]2)-
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[eNeN®]

o000 000a0 Q

Q

100

REAL*8 FTILDA (NSTATES,NSTATES)
REAL*8 RHOHAT (NSTATES,NSTATES)

EXPONENTIAL SUMS WITH POLYNOMIAL COEFFICIENTS

COMPLEX*8 Z (NSTATES,NPMAX+1,NAMAX) , ZEXP (NAMAX)

COMPLEX*8 Q (NSTATES, NPMAX+1,NAMAX) , QEXP (NAMAX)

COMPLEX*8 TEMP (NSTATES, NPMAX+1,NAMAX) , TEMPEXP (NAMAX)

COMPLEX*8 DF (NSTATES, NPMAX+1,NAMAX) ,DFEXP (NAMAX)

COMPLEX*8 FE (NSTATES,NSTATES,NSTATES+1,NSTATES) , FEEXP (NSTATES)
INTEGER NPZ,NAZ,NPQ,NAQ, NPTEMP, NATEMP, NPDF, NADF, NPFE, NAFE

INTERMEDIATE QUANTITIES
INTEGER ITERCOUNT
REAL*8 DVXT (NSTATES)

OUTPUTS
REAL*8 Y (NR+NM) ! OUTPUT VECTOR = NONLINEAR CONTRIBUTION TO CONTROL

DECLARATIONS FOR SPECIFIC NONLINEARITIES
PARAMETER( C1=0.03)

PARAMETER( PI=3.14159265)

REAL*8 D, THETA

REAL*8 E1 (NSTATES),G(NSTATES,NSTATES) ,H (NSTATES, NSTATES)
PRELIMINARY PROBLEM DEPENDENT NONLINEAR CALCULATIONS
THE NONLINEARITY CONSIDERED IN THIS EXAMPLE IS

THE NONLINEARITY | 2]
| z1 |
deltaf(z)= cl¥*| |
| 0 |
I |
this requires that

deltaf= G*(El'*z) *z where G=[c1,0;0,0] , E1={1;0],

deltafsubz'*w = H*(El'*w)*z where H=[2%*cl,0;0,0]}

CALCULATE PRELIMINARY MATRICES
El1(1)=1.

E1(2)=0.

G(1,1)=Cl

G(1,2)=0.

G(Zr 1)=0.

G(2,2)=0.

H(1l1)=2*C1

H(1,2)=0.

H(2,1)=0.

H(2,2)=0.

WRITE(6,1)

WRITE (6, *) 15HTHE G MATRIX IS
FORMAT (' G(',I2,',',1I2,%')=",E25.17)
DO I=1,NSTATES

DO J=1,NSTATES
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WRITE (6,100) I,J,G(I,J)

END DO
END DO
WRITE(6,1)
WRITE (6, *) 15HTHE H MATRIX IS
101 FORMAT (' H(',12,',',1I2,')="',E25.17)

DO I=1,NSTATES
DO J=1,NSTATES
WRITE (6,101) I,J,H(I,J)

END DO
END DO
c
c END OF PRELIMINARY MATRIX CALCULATION
C
C _______________________________________________________
o
o FORMATS FOR DIAGNOSTIC OUTPUTS
1 FORMAT ( )
2 FORMAT (' NAZ=',16," NPZ="',13)
3 FORMAT (' NAQ=',I6,"' NPQ="',13)
5 FORMAT (' DVXT(',I2,')=',E25.17)
6 FORMAT (' NATEMP=',I6," NPTEMP="', I3)
7 FORMAT (' BEGINNING OF ITERATION NUMBER ',I3)
8 FORMAT( I2)
9 FORMAT (' E1(1) = ',E25.17,' E1(2) = ',E25.17)
c
c SET DESIRED NUMBER OF ITERATIONS
WRITE (6, *) 34HENTER NUMBER OF ITERATIONS DESIRED
READ (5,8) ITER
c ITER=1
c
c EXTRACT DATA FOR INPUT
c (DUMMY VALUES ARE INSERTED FOR X,ATILDA,B,QTILDA AND R
c FOR TEST CASE)
c X(1) = 1.
C X(2) = 2.
c
WRITE (6, *) 11HENTER THETA
READ (5, *) THETA
WRITE (6, *) THETA
WRITE (6, *) 7HENTER D
READ (5, %) D
WRITE(6,*) D
X (1) =D*COS (THETA*PI/180.0)
X (2) =D*SIN (THETA*PI/180.0)
o
o
C

DO I=1,NSTATES

DO J=1,NSTATES
ATILDA(I,J)=0.
RTILDA(I,J)=0.
FTILDA(I,J)=0.

END DO

DO J=1,NR+NM
B(I,J)=0.
END DO

END DO
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[

-

DO I=1,NR+NM
DO J=1,NR+NM
R(I,J)=0.
END DO
END DO

1
]
RS

ATILDA(1,1)
ATILDA(1,2)
ATILDA(2,1)
ATILDA(2,2)

[
= o

[}
t
-

B(1,1) = 1.
B(2,2)

i
|

R(1,1)
R(2,2)

[/
=
.

QTILDA(1,1)=14.
QTILDA(1,2)=2.
QTILDA(2,1)=2.
QTILDA(2,2)=2.

FORMAT(' R(',IZ2,',',I2,"')=",E25.17)
DO I=1,NR+NM

DO J=1,NR+NM

WRITE(6,10) I,J,R(I,J)

END DO
END DO

FORMAT (' B(',I2,"',',1I2,")=',E25.17)
DO I=1,NSTATES

DO J=1,NR+NM

WRITE (6,11) I,J,B(I,J)

END DO
END DO

Nonlinear Control of Missiles

Ihkhk Ak hkkkhhkAkkhkkhkkkkkhkkhkkkhkkhhkkkhhhkkhkkkhkkkkkhkhkkhkkkhkkkhkkkkkxk

FORM RTILDA MATRIX

AKX KAAKAAKRKA KKk Ak I A hkkhkhkhkkhkhkkkkhkkkkkkkkkkkhhdhkkkhkkk

* RTILDA=-B*RINVERSE*BTRANSPOSED *
Kk k kAR KKK R I IR KKK KA KA KK IR KA KRRk Kk kAR hhkk k%

CALL LUDCMPR (R, NR+NM, NR+NM, INDXR, DD)
DO I=1,NR+NM
DO J=1,NSTATES
BT (I, J)=B(J,I)
END DO
END DO
DO I=1,NSTATES
DO J=1,NR+NM
RTEMP (J) =BT (J, I)
END DO
CALL LUBKSBR (R, NR+NM, NR+NM, INDXR, RTEMP)
DO J=1,NSTATES
RTILDA(I,J)=0.
DO K=1,NR+NM
RTILDA(I,J)=RTILDA(I,J)-B(J,K)*RTEMP (K)
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END DO
END DO
END DO
C .
12 FORMAT (' RTILDA(',I2,',',I2,')=',E25.17)
C DO I=1,NSTATES
C DO J=1,NSTATES
c WRITE(6,12) I,J,RTILDA(I,J)
c END DO
c END DO
C
C ****************************************************
C
C FORM HAMILTONIAN MATRIX
C
C ********************************
C * *
C * | ATILDA RTILDA | *
C * H = | | *
C * | -QTILDA ~ATILDA' | *
C * *
C ********************************
C
DO I=1,NSTATES
DO J=1,NSTATES
HAM(I, J)=ATILDA(I,J)
HAM (I, J+NSTATES)=RTILDA(I,J)
HAM (I+NSTATES, J)=-QTILDA(I,J)
HAM (I+NSTATES, J+NSTATES)=-ATILDA(J, I)
END DO
END DO
C
13 FORMAT (' HAM(',I2,',',I2,")=',E25.17)
C WRITE (6,1)
C DO I=1,2*NSTATES
C DO J=1,2*NSTATES
C WRITE(6,13) I,J,HAM(I,J)
C END DO
C WRITE(6,1)
C END DO
c _
C SOLVE FOR EIGENVALUES AND EIGENVECTORS OF HAMILTONIAN
CALL ZZ_RG(2*NSTATES, 2*NSTATES, HAM, WRH, WIH, 1,
* EIGVH, ITEMP, TEMPH, IERR)
C
C
14 FORMAT (' EIGH(',I2,')=',E25.17,',',E25.17)
c WRITE (6,1) -
c WRITE (6, *) 34HEIGENVALUES OF THE HAMILTONIAN ARE
c DO I=1,2*NSTATES
C WRITE(6,14) I,WRH(I),WIH(I)
c END DO
c
C
15 FORMAT (' E‘.IGVH(',IZ,',',12,')=',E25.17)
C WRITE (6,1)
C DO J=1,2*NSTATES
C DO I=1,2*NSTATES
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QOO0 000n

aOQOFrQOOOQQO00rrQ0

o))

~J

WRITE(6,15) I,J,EIGVH(I,J)
END DO

WRITE (6,1)
END DO

% %k %k K Kk %k % K Kk Kk ok Kk Kk k ok Kk Kk k kK %k ok ok ok ok gk ok ok ok ok ok gk sk ok Kk ok ok ok ok ok k ke k ke ok ok ke ok ok ok ok ok ok e sk ok ok ke

SELECT STABLE EIGENVALUES AND CORRESPONDING EIGENVECTORS

% % % % % %k % %k %k sk Kk sk K % Kk Kk kK kK ok Kk sk ok ok Sk k ok ok ok sk ok sk ok ok ok ok ok ke ok ok ke ke ke

H * | | = | | * DIAG( EIGH)

* % % *
%* ok Ok Ok *

KA KKK KKAKRKAAA KA A Ak hkhhkkhhkhhkkhkkkkkhkkhxkkkkkkkhkkkk

BUILD Z1 AND Z2 MATRICES
K=0
DO I=1,2*NSTATES
IF (WRH(I).LT.0.) THEN
=K+1
EIG(K)=CMPLX (WRH(I),WIH(I))
IF (WIH(I) .EQ.0.) THEN
DO J=1,NSTATES
21 (J,K)=EIGVH(J, I)
22 (J,K)=EIGVH (J+NSTATES, I)
END DO
END IF
IF (WIH(I).GT.0.) THEN
DO J=1,NSTATES
21 (J,K)=CMPLX(EIGVH(J, I) ,EIGVH(J, I+1))
22 (J,K)=CMPLX (EIGVH (J+NSTATES, I),, EIGVH (J+NSTATES, I+1))
END DO
END IF
IF (WIH(I).LT.0.) THEN
DO J=1,NSTATES
21 (J,K)=CMPLX (EIGVH (J, I-1) ,-EIGVH(J, I))
22 (J,K) CMPLX(EIGVH(J+NSTATES I- 1),-EIGVH(J+NSTATES 1))
END DO
END IF
END IF
END DO

FORMAT (' 21(',I2,',',I2,')=',E25.17,"',"',E25.17)
WRITE(6,1)
DO J=1,NSTATES

DO I=1,NSTATES

WRITE(6,16) I,J,REAL(Z1(I,J)),IMAG(21(I,J))
END DO

WRITE (6,1)
END DO

FORMAT (' 22(',12,',',I2,")=',E25.17,"',',E25.17)
WRITE (6,1)
DO J=1,NSTATES

DO I=1,NSTATES

WRITE(6,17) I1,J,REAL(z2(I,J)),IMAG(Z2(I,J))
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QOO0 O0FrO0Q000

Qa0

END DO
WRITE (6,1)
END DO

FORMAT (' EIG(',I2,')=',E25.17,',',E25.17)
WRITE (6,1)

DO I=1,NSTATES

WRITE (6,18) I,REAL(EIG(I)),IMAG(EIG(I))
END DO

*******************************************************

FORM SOLUTION TO THE ALGEBRAIC RICCATI EQUATION

% % J K % Kk Kk Kk Kk Kk Kk Kk K Kk Kk Kk Kk %k Kk %k Kk k Kk ok ok k%

* P=22*Z1INVERSE *
Kkkkkkkkkkkkkkkkkkkkkkkxkxk

DO I=1,NSTATES
DO J=1,NSTATES
ATEMP (I, J)=21(J,I)
END DO
END DO
CALL LUDCMPC (ATEMP,NSTATES,NSTATES, INDX,DD)
DO I=1,NSTATES
DO J=1,NSTATES
BTEMP (J) =22 (I, J)
END DO
CALL LUBKSBC (ATEMP, NSTATES,NSTATES, INDX, BTEMP)
DO J=1,NSTATES
P (I, J)=REAL (BTEMP (J))
END DO
END DO

DO I=1,NSTATES

DO J=1,NSTATES

BTEMP (J)=0.

END DO

BTEMP (I)=1.

CALL LUBKSBC (ATEMP,NSTATES, NSTATES, INDX, BTEMP)
DO J=1,NSTATES

21INV(I,J)=BTEMP (J)

END DO
END DO

FORMAT(' P(',I2,','I2,')="',E25.17)
DO I=1,NSTATES

DO J=1,NSTATES

WRITE(6,19)I,J,P(I,J)

END DO
END DO
CALL TESTP (ATILDA,QTILDA,RTILDA,P,NSTATES)

*****************************************************

FORM FTILDA MATRIX
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3k kg ok ok 5k ok ok ok ok ok ok ok ok ok ok ok ok ok okok ok ko ok ok ok
* FTILDA=Z1*DIAG*EIG)*Z1INVERSE *

% Je %k Kk K Kk %k Kk K Kk &k Kk Kk k k ok ok %k %k ok Kk Kk %k %k ok k% ok ok ok ok ok ke

QOO0

DO I=1,NSTATES
DO J=1,NSTATES
BTEMP (J)=EIG(J) *21(I,J)
END DO
CALL LUBKSBC (ATEMP,NSTATES,NSTATES, INDX, BTEMP)
DO J=1,NSTATES
FTILDA (I, J)=BTEMP (J)
END DO
END DO

20 FORMAT (' FTILDA(',I2,',',I2,')=',E25.17)
DO I=1,NSTATES
DO J=1,NSTATES
WRITE(6,20) I,J,FTILDA(I,J)
END DO
END DO
CALL TESTF (ATILDA,RTILDA,P,FTILDA, NSTATES)

ok ok ok ok ok ok kK ok & kK kR ko kK ko ko ok ok ok ok ok ok ko ok ok ko ok ke ok ok ok k ok ok
FORM RHOHAT MATRIX

Ak Rk kAR K KRk KKK AR AR A KA KRR KKKk Ak kkk kX hkkkkkkkkkkk k%
* *
* FTILDA*RHOHAT + RHOHAT*FTILDA' = RTILDA/2 *
* *
Xk K o d Kk Kk Kk Kk Kk kK Kk k% sk ok ok k ok k% ok ok ok ok ok ok ko ok ke ok ok ok ok ok ko ok

oo an

CALL RHAT (FTILDA,RTILDA,RHOHAT,NSTATES)
FORMAT (' RHOHAT(',IZ2,',',I2,')="',E25.17)
DO I=1,NSTATES

DO J=1,NSTATES

WRITE(6,21) I,J,RHOHAT(I,J)

END DO
END DO

N
-

o FORM MATRIX EXPONENTIAL
NPFE=0
NAFE=NSTATES
DO I=1,NSTATES
DO J=1,NSTATES
DO L=1,NSTATES
FE(I,J,1,L)=21(I,L)*Z1INV(L,J)
END DO
END DO
FEEXP (I)=EIG(I)
END DO

dkkkkhkhkhkhhkhkhkhkhkhkdkrkkhkkkkhkkhkhkhkhkhkkkkkrkkhkkkkhkhkkkrkkkkkkkk%

FORM MATRIX EXPONENTIAL

CALL MATEXP (FTILDA,EIG,FE,FEEXP,NPFE,NAFE, NSTATES, NSTATES)

QOO0
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CALL WRITEXP (FE,FEEXP,NPFE, NAFE,NSTATES)

********************************************************

INITIALIZE Z,ZEXP,Q,QEXP

oNoNoNeNe Ne!

NPZ=0

NAZ=1

DO L=1,NAZ
ZEXP (L) =0.
DO I=1,NSTATES
DO K=1,NPZ+1

Z(I,K,L)=X(I)

END DO
END DO

END DO

NPQ=0
NAQ=1
DO L=1,NAQ
QEXP (L) =0.
DO I=1,NSTATES
DO K=1,NPQ+1
0(I,K,L)=0.
END DO
END DO
END DO
WRITE(6,1)
WRITE (6, *) 20HAFTER INITIALIZATION

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,
* NSTATES, NPMAX, NAMAX)

START ITERATIONS *** k% kkkokkkkokok ok kokok ko kokokk X kk ok kok ok kokxokkok ok

QO

DO ITERCOUNT=1, ITER
WRITE (6,7) ITERCOUNT

WRITE (6,2) NAZ,NPZ

WRITE (6,1)

WRITE (6, *) 25HAT BEGINNING OF ITERATION

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)
CALL ADD (Q, QEXP,NPQ,NAQ, Z, ZEXP,NPZ,NAZ, 1., RHOHAT,

* NSTATES, NPMAX, NAMAX)
WRITE (6, *) 15SHAFTER FIRST ADD
WRITE(6,2) NAZ,NPZ

CALL WRITE_ZQ(Z, ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES,, NPMAX, NAMAX)
CALL MULT (FE,FEEXP,NPFE,NAFE, 2, ZEXP, NPZ,NAZ, TEMP, TEMPEXP,

* NSTATES, NPMAX, NAMAX, 0, 0)

WRITE (6, *) 16HAFTER FIRST MULT
WRITE(6,2) NAZ,NPZ
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Q

QOO0

QOO0

*

*

*

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALL MULT (FE, FEEXP,NPFE, NAFE, Q, QEXP, NPQ, NAQ, TEMP, TEMPEXP,
NSTATES, NPMAX, NAMAX, 1, 1)

WRITE (6, *) 11HSECOND MULT

WRITE (6,3) NAQ,NPQ

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)
CALL ADD (Q, QEXP,NPQ, NAQ, Z, ZEXP,NPZ,NAZ, -1., RHOHAT,
NSTATES, NPMAX, NAMAX)

WRITE (6, *) 16HAFTER SECOND ADD
WRITE(6,2) NAZ,NPZ
CALL WRITE_ZQ(Z, ZEXP,NPZ,NAZ,Q, QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)

CALL ADD (Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,2.,P,

NSTATES, NPMAX, NAMAX)
WRITE (6, *) 20HAFTER THIRD ADD ****
WRITE(6,3) NAQ,NPQ

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

NONLINEAR PROBLEM DEPENDENT PART OF ITERATION* %%k % k% %% X k% k% k%X
CALCULATE DELTA F
WRITE (6,9)E1(1),E1(2)
CALL MULT3(El,Z,ZEXP,NPZ,NAZ,Z, ZEXP,NPZ,NAZ,
DF, DFEXP, NPDF, NADF, NSTATES , NPMAX , NAMAX)
WRITE (6, *) 10HFIRSTMULT3
CALL WRITE_ZQ (DF,DFEXP, NPDF,NADF,Q, QEXP,NPQ, NAQ, NSTATES , NPMAX, NAMAX)
CALL TRIM NA(DF,DFEXP,NPDF,NADF, NSTATES, NPMAX, NAMAX, 0.0000001)
WRITE (6, *) 24HTRIMNA AFTER FIRST MULT3
CALL WRITE ZQ(DF,DFEXP,NPDF,NADF,Q, QEXP,NPQ, NAQ, NSTATES , NPMAX, NAMAX)
CALL MMULT (G, DF,DFEXP, NPDF, NADF, NPMAX, NAMAX, NSTATES)
WRITE (6, *) 11HFIRST MMULT
WRITE(6,6) NADF,NPDF
CALL WRITE_ZQ (DF,DFEXP, NPDF, NADF, Q, QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)
CALCULATE MINUS Q
CALL MULT3 (E1l,Q,QEXP,NPQ,NAQ, Z, ZEXP,NPZ, NAZ,
TEMP, TEMPEXP , NPTEMP , NATEMP , NSTATES , NPMAX, NAMAX)
WRITE (6, *) 18HAFTER SECOND MULT3
WRITE (6, 6) NATEMP, NPTEMP

CALL WRITE ZQ(Z,ZEXP,NPZ,NAZ, TEMP, TEMPEXP, NPTEMP, NATEMP,
NSTATES, NPMAX, NAMAX)

CALL MMULT (H, TEMP, TEMPEXP, NPTEMP, NATEMP , NPMAX, NAMAX, NSTATES)
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WRITE (6, *) 1L8HAFTER SECOND MMULT

C
CALL WRITE_2Q(Z, ZEXP,NPZ,NAZ, TEMP, TEMPEXP, NPTEMP , NATEMP,
* NSTATES, NPMAX, NAMAX)
c
CALL COPY (TEMP, TEMPEXP, NPTEMP, NATEMP, Q, QEXP,NPQ, NAQ,
* NSTATES, NPMAX, NAMAX)
CALL COPY (DF,DFEXP,NPDF,NADF, Z, ZEXP,NPZ,NAZ,
* NSTATES, NPMAX, NAMAX)
WRITE (6, *) 10HAFTER COPY
WRITE (6,3) NAQ,NPQ
c A
CALL WRITE 20 (Z,ZEXP,NPZ,NAZ,Q, QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)
c
c END OF PROBLEM DEPENDENT NONLINEAR CALCULATIONSX %k %k %k %% %
c
C _______________________________________________________________
C
CALL ADD(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,2.,P,
* NSTATES, NPMAX, NAMAX)
WRITE (6, *) 16HAFTER FOURTH ADD
c
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES, NPMAX, NAMAX)
c
CALL TRIM NA(Z,ZEXP,NPZ,NAZ, NSTATES, NPMAX, NAMAX, 0.000001)
WRITE (6, *) 18HAFTER FIRST TRIMNA
c
CALL WRITE 2Q(Z,ZEXP,NPZ,NAZ,Q, QEXP,NPQ, NAQ, NSTATES , NPMAX, NAMAX)
c
CALL TRIM NA(Q,QEXP,NPQ,NAQ, NSTATES, NPMAX, NAMAX, 0.000001)
WRITE (6, *) 19HAFTER SECOND TRIMNA
c
CALL WRITE_ZQ(Z, ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES, NPMAX, NAMAX)
c
c NON-PROBLEM DEPENDENT CALCULATIONS
c
CALL ADD (Q, QEXP,NPQ,NAQ, Z, ZEXP,NPZ,NAZ, -1., RHOHAT,
* NSTATES, NPMAX, NAMAX)
WRITE (6, *) 1SHAFTER FIFTH ADD
WRITE (6,2) NAZ,NPZ
c
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES , NPMAX, NAMAX)
c
CALL MULT (FE, FEEXP,NPFE,NAFE, 2, ZEXP, NPZ,NAZ, TEMP, TEMPEXP,
* NSTATES, NPMAX, NAMAX, 0, 1)
WRITE (6, *) L6HAFTER THIRD MULT
WRITE (6,2) NAZ,NPZ
c
CALL WRITE ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ, NAQ, NSTATES, NPMAX, NAMAX)
c
CALL MULT (FE,FEEXP, NPFE,NAFE, Q, QEXP, NPQ, NAQ, TEMP, TEMPEXP,
* NSTATES, NPMAX, NAMAX, 1, 0)
WRITE (6, *) 17HAFTER FOURTH MULT
WRITE (6,3) NAQ,NPQ
c
CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES, NPMAX, NAMAX)
c

CALL ADD (Q, QEXP,NPQ,NAQ, Z, ZEXP,NPZ,NAZ, 1., RHOHAT,
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OO0

22

* NSTATES, NPMAX, NAMAX)
WRITE (6, *) 1SHAFTER SIXTH ADD
WRITE(6,2) NAZ,NPZ

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALL INT 0_T(X,2,ZEXP,NPZ,NAZ, NSTATES, NPMAX, NAMAX)
WRITE (6, *) 1SHAFTER INTO TO T
WRITE(6,2) NAZ,NPZ

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALL INT_T_INF(Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)
WRITE (6, *) 17HAFTER INTT TO INF
WRITE (6, 3) NAQ,NPQ

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALL TRIM_NA(Z,ZEXP,NPZ,NAZ,NSTATES,NPMAX,NAMAX,0.000001)
WRITE (6, *) 18HAFTER THIRD TRIMNA

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALLTRIM_NA(Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX,0.000001)
WRITE (6, *) 20HAFTER FOURTH TRIMNA*
END DO !! END OF ITERATIONS kX% skskokokokkdkkk sk okkkkk ko k Xk &k ok k

CALL WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q,QEXP,NPQ,NAQ,NSTATES,NPMAX,NAMAX)

CALL ZEROEVAL (Q,NPQ, NAQ,DVXT, NSTATES, NPMAX, NAMAX)
DO I=1,NSTATES

WRITE(6,5) I,DVXT(I)

END DO

KA A AR AR AA KA A KK AR IR KA AR KRR KA KAk Ak hkkkkkkkkkkkkkkhkkhkkkhkhkkkkkhkkkkx

COMPUTE NONLINEAR CONTRIBUTION TO THE CONTROL
1223323222232y T T e s

* Y=-0.5*RINVERSE*BTRANSPOSE*DVDXT *
khkhkkkhkhkkkhkkkhkhkhkkkhkhkhkkkkhkhkhkhkhkhhkrkkkkhkkkkhkx
DO I=1,NR+NM
Y(I)=0.
DO J=1,NSTATES
Y (I)=Y(I)-BT(I,J)*DVXT(J) /2.
END DO :
END DO
CALL LUBKSBR (R, NR+NM, NR+NM, INDXR, Y)

WRITE(6,1)

WRITE (6, *) 37HNONLINEAR CONTRIBUTION TO THE CONTROL
FORMAT (' Y(',I2,')=',E24.17)

DO I=1,NM

WRITE(6,22) I,Y(I)

END DO

STOP

END INLHINF
KKK KKK KK KA KK A AR KKKk AR KRR AR AR I A kA Ak kkkhkkhkkkkkkkkkkkkkkkh kX%
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Q

cNo N NS RO O NP

[eNeKe!

*************************************************************
SUBROUTINE RHAT (F,RTILDA, RHOHAT, NSTATES)

*************************************************

* *
* F*RHOHAT + RHOHAT*F' = RTILDA/2 *
* *

*************************************************

INTEGER NSTATES, NMAX, NNMAX

PARAMETER ( NMAX=20)

PARAMETER ( NNMAX= (NMAX* (NMAX+1)) /2)

INTEGER NN, INDX (NNMAX)

REAL*8 F (NSTATES,NSTATES),RTILDA(NSTATES,NSTATES)
REAL*8 RHOHAT (NSTATES,NSTATES)

REAL*8 R(NMAX, NMAX)

REAL*8 FF (NNMAX, NNMAX) , RR (NNMAX)

REAL*8 D

INTEGER I,J

NN= (NSTATES* (NSTATES+1)) /2
R=RTILDA/2

DO I=1,NSTATES
DO J=1,NSTATES
R(I,J)=RTILDA(I,J) /2.
END DO
END DO
CALL STACK2 (F,FF,NSTATES, NN, NNMAX)
CALL STACK1 (R, RR,NSTATES, NN, NMAX, NNMAX)
CALL LUDCMPR (FF, NN, NNMAX, INDX, D)
CALL LUBKSBR (FF,NN, NNMAX, INDX, RR)
CALL UNSTACK (RR, RHOHAT,NSTATES, NN)
RETURN
END !RHAT

*************************************************************
*************************************************************

SUBROUTINE UNSTACK (XX, X, N, NN)
Je e ok ok ok ok I ek ke e ok e ok ok ok ok ok kR R A R R kR Rk kR ok ok ek ok ok ok ok kK

* INVERSE OF SUBROUTINE STACK1 *
********************************************
REAL*8 X (N,N), XX (NN)

INTEGER I,J,N,NN,M

M=1

DO I=1,N

DO J=I,N
X(I,J)=XX(M)
X(J, I)=XX(M)
M=M+1

END DO

END DO

RETURN

END 'UNSTACK
kKKK KK Ak Fdkkk kKRR AKKK A AR K AA KRRk kkk ok kkkkkkkkkdkkkkkkxkkkkxx

*************************************************************

SUBROUTINE STACKI1 (X, XX,N,NN, NMAX, NNMAX) | NN=(N* (N+1)) /2
**********************************************************
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o} * X is an N by N symmetric matrix *
C * XX is an NN by 1 stacked version of X proceeding along *
c * portions of rows on and above the diagonal *
C % % %k % K K % Kk de Kk Kk Kk Kk Kk ok ok ok sk sk Kk ke ke ke ok sk sk s sk kK ke k %k ok ko ke ke ok ok ok ok ok ok ok ke ok ke ok

[oNe!

a0

[oNe!

a0

[eNeoNONe]

REAL*8 X (NMAX,NMAX) , XX (NNMAX)
INTEGER I,J,II

II=1
DO I=1,N
DO J=I,N
XX(II)=X(I,J)
II=II+1
END DO
END DO
RETURN

END !STACK1
KAAAA KKK E AR KA AR KKK AR A A KA KA AR A I AR R AR A KA AR A K AR Ak ARk kkkkkk kK %

% sk k) kK kK Kk kK Kk Kk Kk Kk sk sk sk %k sk sk k% ke sk ok sk gk ok ok ok gk ok sk sk Sk %k ke kK ok sk ek ok ok ok ok ok ok ok ok ok k ke ok
SUBROUTINE STACK2 (A,AA,N,NN, NNMAX) ! NN=(N*(N+1))/2

* % % Kk %k %k K Kk Kk Kk Kk Kk Kk ok k %k kK %k Kk Kk %k %k %k ok ok sk Sk k %k k ok sk ok ok sk ok vk ke ke ke ok ok ok ok ok ok ok ok ke ke ko ok ok

* Changes the A matrix in A*X+X*Atranspose=B (with X and B *

* gymmetric) into the AA in AA*XX=BB where XX and BB are *

* stacked versions of X and B respectively *

% Je %k % % K Kk Kk Kk Kk Kk Kk K Kk Kk gk kK Kk Kk Kk Kk ok sk sk sk sk ok ke ko sk ok sk sk sk sk kR Kk ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok

REAL*8 A(N,N), AA(NNMAX,NNMAX)

INTEGER I,J,K,II,JJ,N,NN

DO II=1,NN

DO JJ=1,NN
AA(II,JJ)=0.0
END DO

END DO

II=1
DO I=1,N
DO J=I,N
DO K=1,N
CALL STACK(N,K,J,JJ)
AA(II,JJ)=AA(II,JJ)+A(I,K)
CALL STACK(N,K,I,JJ)
AA(II,JJ)=AA(II,JJ)+A(J,K)
END DO
II=II+1
END DO
END DO

RETURN

END ! STACK2
Ak KA R KKK KA Ak K Ak k kAR k kAR Ak ko kAR AR Ak kkkkkkkk Ak kk kX kkkk kK k%

S % Je %k d Kk kK K Kk Tk Kk kK Kk kK K Kk kK kK sk ok sk %k sk ok sk % %k Kk %k Kk ok %k ke ok %k %k ok ok Kk sk ok sk ok %k ke ok ok ok ok ok ke ok
SUBROUTINE STACK(N,I,J,II)

% % K J Kk T Kk ok Kk ok gk sk gk Kk ok g Kk ke ke ok ke ok Kk sk ke ok ke ok ke sk ok ok ko ok ok kR ok ke ok ok ko k k ok ok ok ok ok ok ok

* TRANSFORMS ROW AND COLUMN INDICES OF N BY N SYMMETRIC *

* MATRIX TO INDEX OF THE STACKED MATRIX *
*********************************************************
INTEGER N, I,J,II

IF(J.GE.I) II=((2*N-I)*(I-1))/2+J
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IF(J.LT.I) II=((2*N-J)*(J-1))/2+I
RETURN
END ! STACK

*****************‘k*****’k*************************************
*************************************************************

SUBROUTINE LUDCMPR(A,N,NP, INDX,D)

Given an nxn matrix a, with physical dimension np, this
routine replaces it by the rowise permutation of itself.

A and N are input, A is output. INDX is an output vector
which records the row permutation effected by the partial
pivoting; D is output as +1 or -1 depending on whether the
number of row interchanges was even or odd, respectively.
This routine is used in combination with LUBKSBR to solve
linear equations or invert a matrix.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

Q0

Q0000000

FORMAT (' Singular matrix in LUDCMPR')
PARAMETER (NMAX=100, TINY=1.0e-20)
DIMENSION A (NP,NP),INDX(N),VV(NMAX)
D=1.0

[l ¢

DO I=1,N
AAMAX=0.0
po J=1,N
IF (ABS(A(I,J)) .GT.AAMAX) AAMAX=ABS (A(I,J))
END DO
IF (AAMAX.EQ.0.0) WRITE(6,1) !singular matrix
IF (AAMAX.EQ.0.0) PAUSE !'singular matrix
VV(I)=1.0/AAMAX
END DO
DO J=1,N
IF (J.GT.1l) THEN
DO I=1,J-1
SUM=A(I,J)
IF (I.GT.1l) THEN
DO K=1,I-1
SUM=SUM-A(I,K) *A(K,J)
END DO
A(I,J)=SUM
END IF
END DO
END IF
AAMAX=0.0
DO I=J,N
SUM=A(I,J)
IF (J.GT.l) THEN
DO K=1,J-1
SUM=SUM-A(I,K)*A(K,J)
END DO
A(I,J)=SUM
END IF
DUM=VV (I) *ABS (SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=I
AAMAX=DUM
END IF
END DO
IF (J.NE.IMAX) THEN
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DO K=1,N
DUM=A (IMAX, K)
A (IMAX,K)=A(J,K)

A(J,K)=DUM
END DO

D=-D

VV (IMAX) =VV (J)
END IF

INDX (J)=IMAX
IF (J.NE.N) THEN
IF (A(J,J).EQ.0.0) A(J,J)=TINY
DUM=1.0/A(J,J)
DO I=J+1,N
A(I,J)=A(I,J)*DUM
END DO
END IF
END DO
IF (A(N,N).EQ.0.0) A(N,N)=TINY
RETURN

END ! LUDCMPR
AR KA KKK KA KK KKK KKK KK AR KKK KA AR KK I AR AR AR ARk kk Ik kA kkkkk kK%

khkkkhkhkhkhkhkkAkkhkkhkkkkkhkkhkkhkkdkhkkkkkhkkhkhkkhkkkkkkkkkkhkkkkhkkhkkkkkkxk

SUBROUTINE LUBKSBR(A,N,NP, INDX, B)
Solves the set of N linear eguations A*X=B. Here A is input
not as the matrix A but rather as its LU decomposition,
determined by the routine LUDCMPR. B is input as the right-hand
side vector B, and returns with the solution vector X. A,N,NP
and INDX are not modified by this routine and can be left in
place for successive calls with different right-hand sides B.
This routine takes into account the possibility that B will
begin with many zero elements, so it is sofficient for use in
matrix inversion
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A (NP,NP), INDX(N),B(N)
II=0
DO I=1,N
LL=INDX(I)
SUM=B (LL)
B(LL)=B(I)
IF (II.NE.O) THEN
DO J=II,I-1
SUM=SUM-A(I,J) *B(J)
END DO
ELSE IF (SUM.NE.QO) THEN
II=I
END IF
B(I)=SUM
END DO
DO I=N,1,-1
SUM=B (I)
IF (I.LT.N) THEN
DO J=I+1,N
SUM=SUM-A (I, J) *B (J)
END DO
END IF
B(I)=SUM/A(I, I)
END DO
RETURN

Q0

QOO0 0
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END ! LUBKSBR
Ikk Kk kkkkkkkkk kR kkkkk kA kkkkkkkkokkkkkkkkkkkkdekdkkkkkkokkkkx

*************************************************************
SUBROUTINE MATEXP (A,EIG, AE, AEEXP,NP,NA,N, NMAX)
**********************************************************
* INPUT N,NMAX,A(NMAX,NMAX),EIG(NMAX) *
RETURNS NP, NA, AE (N,N,N+1,N),AEEXP (N) *
AE REPRESENTS THE MATRIX EXPONENTIAL OF A *
[e”(A*t)] (i,j)=sum on k and 1 of *

*

*

aQQ

* %* % b

AE (i, j,k,1) *t”~ (k-1) *e” (AEEXP (1) *t)
*********************************************************
INTEGER NMAX, NMAXX

PARAMETER ( NMAXX=20)

INTEGER N,NP,NA, INDX (NMAXX) , NEIG (NMAXX)

REAL*8 A (NMAX,NMAX) ,ATEMP (NMAXX, NMAXX)

REAL*8 WR (NMAXX),WI (NMAXX)

COMPLEX*8 EIG (NMAX)

COMPLEX*8 AE (NMAX,NMAX, NMAX+1,NMAX) , AEEXP (NMAX)
COMPLEX*8 VDM (NMAXX, NMAXX) , VDMINV (NMAXX, NMAXX)
REAL*8 G (NMAXX, NMAXX) , GTEMP (NMAXX, NMAXX)

INTEGER I,J,K,L,M,NCOEF, KK, LL

INTEGER INDX1 (NMAXX) !FOR MATRIX INVERSION ROUTINES
REAL D !'FOR MATRIX INVERSION ROUTINES

LOGICAL FLAG

COMPLEX*8 ZERO

OO0 0n

c THE FOLLOWING ARE DIMENSION STATEMENTS FOR A DIAGNOSTIC
REAL*8 T, TIME (4),AEVALR(NMAXX,NMAXX),AER,AEI,EIGR,EIGI
REAL*8 AEVALI (NMAXX, NMAXX)

INTEGER IERR, ITEMP (NMAXX) 'FOR EIGENVALUE ROUTINE ZZ_RG
REAL*8 TEMP2 (NMAXX) , Z (NMAXX, NMAXX) 'FOR EIGENVALUE ROUTINE ZZ_RG

FIND EIGENVALUES OF A

DO I=1,N

DO J=1,N
ATEMP (I, J)=A(I,J)
END DO

END DO

CALL 2Z_RG (NMAXX,N, ATEMP,WR,WI, 0,2, ITEMP, TEMP2, IERR)
DO I=1,N
EIG(I)=CMPLX (WR(I),WI(I))
END DO
FORMAT (' EIG(',I2,")=',E25.17,"',"',E25.17)
DO I=1,N
WRITE(6,1) I,WR(I),WI(I)
END DO

QOO0 OrRrRQOOOOOOO0O00O000000n

CALL EIGSRT (N,EIG)

N-O

FORMAT (' FTILDA MATRIX IS NOT STABLE')
IF (REAL(EIG(1)) .GE.0.) THEN

WRITE (6, 2)

PAUSE

END IF
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c
c FORM INDEX VECTOR TO REPRESENT MULTIPLICITIES
INDX(1)=0
DO I=2,N
IF (EIG(I) .EQ.EIG(I-1)) THEN
INDX (I)=INDX (I-1)+1
ELSE
INDX(I)=0
END IF
END DO
c
c FORM VANDERMONDE MATRIX
DO I=1,N
DO J=1,INDX(I)
VDM(I,J)=(0.,0.)
END DO
DO J=INDX(I)+1,N
L=J-1
NCOEF=1
DO K=1, INDX(I)
NCOEF=NCOEF *L
L=L-1
END DO
VDM (I, J)=NCOEF* (EIG(I) **L)
END DO
END DO
c
c FIND NUMBER OF EXPONENTIAL TERMS AND ORDER OF
C POLYNOMIAL COEFICIENTS
c _
NEIG(1)=1
DO I=2,N
IF (EIG(I) .EQ.EIG(I-1)) THEN
NEIG(I)=NEIG(I-1)
ELSE
NEIG(I)=NEIG(I-1)+1
END IF
END DO
NA=NEIG (N)
c
NP=0
DO I=1,N
IF (INDX(I) .GT.NP) THEN
NP=INDX (I)
END IF
END DO
c
c INVERT VANDERMONDE MATRIX
c
DO I=1,N
DO J=1,N
VDMINV (I, J)=(0.,0.)
END DO
VDMINV (I, I)=(1.,0.)
END DO
CALL LUDCMPC (VDM, N, NMAXX, INDX1,D)
c

DO J=1,N
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CALL LUBKSBC (VDM, N, NMAXX, INDX1, VDMINV(1,J))
END DO

Cc SET G=IDENTITY MATRIX
DO L=1,N
DO M=1,N
G(L,M)=0.
END DO
G(L,L)=1.
END DO

o CALCULATE THE INTERPOLATING MATRICES
DO K=1,NP+1
DO L=1,NA
DO I=1,N
DO J=1,N
AE(I,J,K,L)=(0.,0.)
END DO
END DO
END DO
END DO
DO K=1,N
DO L=1,N
DO I=1,N
DO J=1,N
KK=INDX (L) +1
LL=NEIG(L)
AE (I, J, KK, LL)=AE (I, J, KK, LL) +G (I, J) *VDMINV (K, L)
END DO
END DO
END DO

c INCREASE POWER OF A SO THAT G=A*G=A"K FOR NEXT K
DO I=1,N
DO J=1,N
GTEMP (I, J)=0.
DO L=1,N
GTEMP (I,J)=GTEMP (I,J)+A(I,L)*G(L,J)
END DO
END DO
END DO
DO I=1,N
DO J=1,N
G(I,J)=GTEMP (I, J)
END DO
END DO

END DO

AEEXP (1)=EIG (1)
J=1
DO I=2,N
IF (NEIG(I) .NE.NEIG(I-1)) THEN
J=J+1
AEEXP (J)=EIG(I)
END IF
END DO
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c TRIM MAX POWER OF t IF NECESSARY
ZERO=(0.,0.)
DO K=NP+1,2,-1
FLAG=.TRUE.
DO L=1,NA
DO I=1,N
DO J=1,N
IF (AE(I,J,K,L).NE.ZERO) THEN
FLAG=.FALSE.
END IF
END DO
END DO
END DO
IF (FLAG) THEN
NP=NP-1
END IF
END DO

*kkKkkkkk Xk Xk **k*DIAGNOSTIC EVALUATION***kkkkkkkkkkkk k%
FORMAT (' AEXP(',I2,',',12,")=',E25.17,"',',E25.17)
FORMAT (' e**(A*' E 25.17,") IS")

FORMAT (' ")
TIME (1)=0.
TIME(2)=0.01
TIME (3)=0.02
TIME (4)=0.03
DO M=1,4
T=TIME (M)
WRITE (6, 5)
WRITE(6,4) T
DO I=1,N
DO J=1,N
AEVALR(I, J)=0.
AEVALI(I,J)=0.
DO K=1,NP+1
DO L=1,NA
AER=REAL (AE(I,J,K,L))
AEI=IMAG(AE(I,J,K,L))
EIGR=REAL (EIG(L))
EIGI=IMAG (EIG(L))
IF(K.NE.1) THEN
AEVALR (I, J)=AEVALR(I,J)+(T** (K-1))*EXP (EIGR*T)
* * (AER*COS (EIGI*T) -AEI*SIN(EIGI*T))
AEVALI (I,J)=AEVALI(I,J)+(T**(K-1))*EXP (EIGR*T)
* * (AEI*COS (EIGI*T)+AER*SIN(EIGI*T))
ELSE
AEVALR (I, J)=AEVALR (I, J)+EXP (EIGR*T)
* * (AER*COS (EIGI*T) -AEI*SIN(EIGI*T))
AEVALI (I, J)=AEVALI(I,J)+EXP (EIGR*T)
* * (AEI*COS (EIGI*T)+AER*SIN(EIGI*T))
END IF
END DO
END DO
WRITE (6,3)I,J,AEVALR(I,J),AEVALI(I,J)
END DO
END DO

END DO
C *xkkkkkkkkkkkx*END OF DIAGNOSTIC********************

w0

-141-

McDonnell Douglas Corporation




Report MDC 95P0058 Nonlinear Control of Missiles

RETURN

END !MATEXP
C dkkkk kKKK Ik kA I AR KKK KKKk kdkdkokkkkkkk Ak Xk kkkkdkkkkkkkkkxxx

C *************************************************************

SUBROUTINE LUDCMPC (A,N,NP, INDX,D)
dokdk ok ok ok ok kk ok ok Rk ko deok ok ok ok k ok ok kR Kk ke ko ko ko Kok ok ok ok K

* COMPLEX VERSION OF LU-DECOMPOSITION *
************‘k******************************
INTEGER N, NP, NMAX

PARAMETER (NMAX=100, TINY=1. 0E-20)

COMPLEX*8 A (NP,NP) , SUM, DUM2

INTEGER INDX(N),I,J,IMAX

REAL*8 D, AAMAX, VV (NMAX) , DUM, MAG

oo

D=1.

DO I=1,N
AAMAX=0.
DO J=1,N
IF (MAG (A(I,J)) .GT.AAMAX) AAMAX=MAG (A(I,J))
END DO
IF (AAMAX.EQ.0.) PAUSE
VV(I)=1./ARMAX
END DO
DO J=1,N
po I=1,J-1
SUM=A(I,J)
DO K=1,I-1
SUM=SUM-A (I, K) *A(K,J)
END DO
A(I,J)=SUM
END DO
AAMAX=0.
DO I=J,N
SUM=A(I,J)
DO K=1,J-1
SUM=SUM-A (I, K) *A (K, J)
END DO
A(I,J)=SUM
DUM=VV (I) *MAG (SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=I
AAMAX=DUM
END IF
END DO
IF (J.NE.IMAX) THEN
DO K=1,N
DUM2=A ( IMAX, K)
A (IMAX,K)=A(J,K)
A(J,K)=DUM2
END DO
D=-D
VV (IMAX) =VV (J)
END IF
INDX (J) =IMAX
IF(A(J,J) .EQ. (0.,0.)) A(J,J)=(TINY,0.)
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[oNeNe!

Qa0

IF(J.NE.N) THEN
DUM2=1./A(J,J)
DO I=J+1,N
A(I,J)=A(I,J)*DUM2
END DO
END IF
END DO
RETURN
END !LUDCMPC

Nonlinear Control of Missiles

% % % K g K K gk K %k Kk Kk sk Kk 5k Kk g ok Kk %k Kk Kk ok Kk sk ok ok sk ok gk ok ek ok sk ok ok ok ok ok ok K ok ok ok Sk ok ke ok ok ok ok ok ok ok ok ok k ok ok
%* %k K %k Kk vk K Kk K K Kk Kk sk Kk Kk k Kk ok kK ok Kk k kK sk Kk k ke ke kK ok sk k %k kK ok K ok ok ok sk ok ok ok ke ok ok ok ke ok ok ok ok ok ok

SUBROUTINE LUBKSBC (A, N, NP, INDX, B)

% % % %k J %k %k Kk Kk Kk Kk Kk Kk Kk ok dk sk sk Kk Kk 3k ok ok K ok ko kK %k ok ok ok ko ke ke ok ok ok ok ok

* COMPLEX VERSION OF LU-BACKSUBSTITUTION  *
¢ % % % %k Kk Kk Kk K %k Kk sk Kk %k Kk %k %k %k Kk %k Kk %k Kk ok k% ok Kk sk ok ke ok %k ko k ok ok ok ok ke ok
INTEGER N, NP
COMPLEX*8 A (NP,NP),B(N),SUM
INTEGER INDX(N),II,I,LL
II=0
DO I=1,N
LL=INDX(I)
SUM=B (LL)
B(LL)=B(I)
IF(II.NE.0) THEN
DO J=II,I-1
SUM=SUM-A (I, J) *B(J)
END DO
ELSE IF(SUM.NE. (0.,0.)) THEN
II=I
END . IF
B (I)=SUM
END DO
DO I=N,1,-1
SUM=B (I)
IF(I.LT.N) THEN
DO J=I+1,N
SUM=SUM-A(I,J) *B(J)
END DO
END IF
B(I)=SUM/A(I,I)
END DO
RETURN
END ! LUBKSBC

Ak hkkkhkkhkkhkhkhkhkkhkk Ak kkkkkkhkkkhkkkkkhkkhkkhhkkhkkkkkrxkkkkkkkkkkkkkkk
% % % J K g ok d gk Kk % Kk ok ok Kk sk Kk %k %k K sk ok ok % sk ok K sk ke k sk k% ke ok sk sk ok sk ok ok 3k ok ok Sk ok ok ok ok ok ok ok ok ok ke ok ke ok

FUNCTION MAG(A)
kkkhkkkkhkkkhkkkkkkhhkkkkkkkkkkdhkkhkkkkkkkxk

* RETURNS MAGNITUDE OF COMPLEX NUMBER *
AhkIkhkhkkhkhkkkhkkkkkhkhkhkkhkkhkkkkkkkkkkkkkhkkkhkkk
COMPLEX*8 A

REAL*8 TINY,ZERO, AR, AI,MAG

PARAMETER ( TINY=1.0E-12, ZERO=0.)

AR=ABS (REAL (&) )

AI=ABS (IMAG(R))

IF (AR.LT.TINY) THEN AR=ZERO

IF (AI.LT.TINY) THEN AI=ZERO

MAG=SQRT (AR**2+AT**2)

RETURN
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(oNe]

[N NP K]

10

12

20
21

22

END 'MAG

Nonlinear Control of Missiles

*************************************************************
*************************************************************

SUBROUTINE EIGSRT (N, ARR)

****************************************************************

*x SORTS COMPLEX ARRAY ARR IN THE ORDER OF DEREASING REAL PARTS *
* TERMS WITH EQUAL REAL PARTS ARE SUBSORTED BY IMAGINARY PARTS *
Ik kk kR kAR kA Ak kA KR A AR KKK KEK KKK KKk KKK KKKk KRR I Ak kkkkkkkkkkdkkkkk

PARAMETER (M=7,NSTACK=50,FM=7875.,FA=211.,FC=1663.,FMI=1./FM)

COMPLEX*8 A, ARR(N)
INTEGER ISTACK (NSTACK)
LOGICAL L1,12,L3
JSTACK=0
L=1
IR=N
FX=0.
IF (IR-L.LT.M) THEN
DO J=L+1, IR
A=ARR (J)
DO I=J-1,1,-1
L1=REAL (ARR(I)) .GT.REAL(A)
L2=REAL (ARR(I)) .EQ.REAL(A)
L3=IMAG(ARR(I)) .GE.IMAG(A)
IF(L1.0R. (L2.AND.L3))GO TO 12
ARR(I+1)=ARR{(I)
END DO
I=0
ARR(I+1)=A
END DO
IF (JSTACK.EQ.0) RETURN
IR=ISTACK (JSTACK)
L=ISTACK (JSTACK-1)
JSTACK=JSTACK-2
ELSE
I=L
J=IR
FX=MOD (FX*FA+FC, FM)
IQ=L+ (IR-L+1) * (FX*FMI)
A=ARR (IQ)
ARR (IQ)=ARR(L)
CONTINUE
IF(J.GT.0) THEN
L1=REAL(A) .GT.REAL(ARR(J))
L2=REAL(A) .EQ.REAL (ARR(J))
L3=IMAG (A) .GT.IMAG (ARR(J))
IF(L1.0OR. (L2.AND.L3)) THEN

J=J-1

GO TO 21

END IF
END IF
IF(J.LE.I)THEN
ARR(I)=A

GO TO 30
END IF
ARR(I)=ARR(J)
I=I+1

IF(I.LE.N)THEN
L1=REAL(A) .LT.REAL (ARR(I))
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30

[eNeKe]

*

L2=REAL(A) .EQ.REAL (ARR(I))
L3=IMAG{A) .LT.IMAG(ARR(I))
IF(L1.0OR. (L2.AND.L3) ) THEN
I=I+1
GO TO 22
END IF
END IF
IF(J.LE.I) THEN
ARR (J)=A
I=J
GO TO 30
END IF
ARR (J) =ARR(I)
J=J-1
GO TO 20
JSTACK=JSTACK+2
IF (JSTACK.GT.NSTACK) PAUSE 'NSTACK must be made larger.'
IF(IR-I.GE.I-L) THEN
ISTACK (JSTACK) =IR
ISTACK (JSTACK-1)=I+1
IR=I-1
ELSE
ISTACK(JSTACK)=I-1
ISTACK (JSTACK-1)=L
L=I+1
END IF
END IF
GO TO 10
END !EIGSRT

hhkhkkhkhkAkhkhkhkkkhkhkrhkkhkhkkhkhkhhkhkkhhkkhrkkkhkkkrhkkhkhhhkhrhhkhkkhkkkkk
AAKAKAKKKAAK KKK KA KR Ih AR kkkhkkhkhkkhkkkhkkkhkkkkkkhkkkhhkdkhkkhkhkkxxkk

SUBROUTINE COPY (A, AEXP,NPA,NAA, B, BEXP,NPB, NAB, NSTATES, NPMAX, NAMAX)
Ak kKA KK KKK A KA A KK A KK KAk kkkkkkkk ko kkkkkk ok kkkkkkkkkkkkkkokkkkkkkkkkkkk Xk k%

* COPIES A STRING A, AEXP NPA NAA INTO A NEW STRING B BEXP NPB NAB *
A KKK KKK KA A A A AR I A Ak kA kA Ak kkkkkhkkkkkkkkk Ak hkhkkkkkkkkkkkkkkkkkdkkhkkkkkk
INTEGER NPMAX, NAMAX

INTEGER NPA,NAA,NPB,NAB,NSTATES

COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)

COMPLEX*8 B (NSTATES,NPMAX+1,NAMAX) , BEXP (NAMAX)

INTEGER I,J,K,L

NPB=NPA
NAB=NAA
DO L=1,NAA
BEXP (L) =AEXP (L)
DO K=1,NPA+l
DO I=1,NSTATES
B(I,K,L)=A(I,K,L)
END DO
END DO
END DO
RETURN
END !COPY
KA KKK R KK A A A A A AT IIEAKRKAKR A KA AR Ak kI hk ok ko kkkkkhkkkhkhhkhkhkhkkhkkkkkkk
SUBROUTINE ADD2 (A,AEXP,NPA,NAA, COEFFA,CA,
B, BEXP, NPB, NAB, COEFFB, CB,

NSTATES, NPMAX, NAMAX)
Ik KKK KKK I KRR KKK AR KKK KKK KA R AA KKK KA KKK I AR R A IR R kA Ik kkkkkkk kK%
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************************************************************

C * ADDS VECTOR STRINGS OF EXPONENTIALS A AND B TO PRODUCE *
Cc * THE VECTOR STRING B:=COEFFB*CB*B+COEFFA*CA*A *
C * - *
c *  A---->|COEFFA |-=-=-- >| CA |-===—==- *
C * 0 eeem———— ——— I *
C * real scalar real matrix | ===1 *
C * | + |-> B:=COEFFB*CB*B *
c * === +COEFFA*CA*A *
C * | *
o *  B---->|COEFFB |=----- >| CB |-=—===—- *
c x  cmme——— — *
c * real scalar real matrix *
C *

INTEGER NPA,NAA,NPB,NAB,NPC

INTEGER NPMAX,NAMAX, NMAX

PARAMETER ( NMAX=20)

COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) ,AEXP (NAMAX)
COMPLEX*8 B (NSTATES, NPMAX+1,NAMAX) , BEXP (NAMAX)
REAL*8 CA(NSTATES,NSTATES), COEFFA

REAL*8 CB(NSTATES,NSTATES),COEFFB

COMPLEX*8 D (NMAX)

INTEGER I,J,K,L

= O

FORMAT (' OVERFLOW OF NAMAX IN SUBROUTINE ADD2')
IF (NAA+NAB.GT.NAMAX) THEN

WRITE (6,1)

PAUSE

END IF

NPC=MAX (NPA, NPB)
DO K=1,NAB
DO J=1,NPC+1
IF(J.GT.NPB+1) THEN
DO I=1,NSTATES
B(I,J,K)=(0.,0.)
END DO
ELSE
DO I=1,NSTATES
D(I)=(0.,0.)
DO L=1,NSTATES
D (I)=D(I)+COEFFB*CB(I,L)*B(L,J,K)
END DO
END DO
DO I=1,NSTATES
B(I,J,K)=D(I)
END DO
END IF
END DO
END DO

DO K=1,NAA
BEXP (NAB+K) =AEXP (K)
DO J=1,NPC+1
IF (J.LE.NPA+1) THEN
DO I=1,NSTATES
B(I,J,NAB+K)=(0.,0)
DO L=1,NSTATES
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aQQ

QQOO0000000000

= Q

NO O

B(I,J,NAB+K)=B(I,J,NAB+K)+COEFFA*CA(I, L) *A(L,J,K)

END DO
END DO
ELSE

DO I=1,NSTATES
B(I,J,NAB+K)=(0.,0.)

END DO
END IF

END DO

END DO

NPB=NPC

NAB=NAB+NAA

SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS
CALL QCKSRT (NAB, NPB,BEXP,B,NSTATES, NPMAX, NAMAX)

COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS
CALL SHRINK (B,BEXP,NPB,NAB,0.000001,NSTATES, NPMAX, NAMAX)

RETURN
END !'ADD2

% %k %k %k % K %k % %k Kk Kk Kk Kk Kk Kk Kk Kk sk ok sk gk %k ok g %k ok ok vk sk sk %k gk ke %k ok Kk 3k sk ok %k ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ke ke ok
% % k% %k % % J g Kk Kk Kk ok kK kK gk %k %k e ok ok ok K ok sk sk sk %k %k ke ok ok sk ok ok ok gk ok Sk ke ok ok ok ok ok ok ok ke ke ke ke k ke ok

SUBROUTINE MULT3 (D, A, AEXP,NPA,NAA, B, BEXP, NPB, NAB, C, CEXP,NPC, NAC,

NSTATES, NPMAX, NAMAX)
dok ok k K A kK ok ok K K K kR ok K Kk kK ok ko K Kk ok kK K ok ko ok ok ok ok ok ok ok ok ok ok ok kK

* MULTIPLIES CONSTANT VECTOR D WITH STRINGS A AND B TO PRODUCE *
* THE STRING C. C=(TRANSP (D) *A) *B - *
* NPA,NPB AND NPC ARE THE DEGREES OF THE POLYNOMIAL *
* COEFFICIENTS OF A,B AND C RESPECTIVELY. *
* NAA,NAB AND NAC ARE THE NUMBER OF EXPONENTIAL TERMS IN *
* A,B AND C RESPECTIVELY *
* *
* A(t)-->| D |-—=--=- > C(t)=((TRANSP (D) *A(t))*B(t) *
* - *
* ~ *
*  B(t)----- | *
*

*
AhkAkAkKKAhkAkhkhkkkhkhhkkhkhhhhkhkhhkhhkhkhkkkrhkkhkhkkkkdhkkhkhhkhkkhkkkhhhkhkkkkhkhkk

INTEGER NPA,NAA,NPB,NAB,NPC,NAC,NSTATES, NPMAX, NAMAX
REAL*8 D (NSTATES)

COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)
COMPLEX*8 B (NSTATES,NPMAX+1,NAMAX) , BEXP (NAMAX)
COMPLEX*8 C (NSTATES,NPMAX+1,NAMAX) , CEXP (NAMAX)
INTEGER I,J,L,M

INTEGER I1,J1

FORMAT (' OVERFLOW OF NPMAX IN SUBROUTINE MULT3')
IF (NPA*NPB.GT.NPMAX) THEN

WRITE (6,1)

PAUSE

END IF

FORMAT (' OVERFLOW OF NAMAX IN SUBROUTINE MULT3')
IF (NAA+NAB.GT.NAMAX) THEN

WRITE(6,2)

PAUSE
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END IF

NPC=NPA+NPB
NAC=0
DO I=1,NAA
DO J=1,NAB
NAC=NAC+1
CEXP (NAC) =AEXP (I) +BEXP (J)
DO L=1,NPA+l
DO M=1,NPB+1
DO Il=1,NSTATES
C(I1,L+M-1,NAC)=(0.,0.)
END DO
END DO
END DO
DO L=1,NPA+l
DO M=1,NPB+1
DO Il=1,NSTATES
DO J1=1,NSTATES
C(I1,L+M-1,NAC)=C(I1,L+M-1,NAC)+B(I1,M,J)*D(J1)*A(J1,L,I)
END DO
END DO
END DO
END DO
END DO
END DO

c SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS
CALL QCKSRT (NAC,NPC,CEXP,C,NSTATES, NPMAX, NAMAX)

aQQ

COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS
CALL SHRINK(C,CEXP,NPC,NAC,0.000001,NSTATES,NPMAX,NAMAX)

ELIMINATE TERMS WITH SMALL COEFFICIENTS

CALL TRIM_NA(C,CEXP,NPC,NAC,NSTATES,NPMAX,NAMAX,0.000001)
CALL TRIM_NP(C,CEXP,NPC,NAC,NSTATES,NPMAX,NAMAX,0.000001)
RETURN

END !MULT3

*********************************************************
*********************************************************
SUBROUTINE ADD (A, AEXP,NPA,NA,B, BEXP, NPB,NB, COEFF, C,NSTATES,
* NPMAX, NAMAX)
******************************************‘k***************
* ADDS VECTOR STRINGS OF EXPONENTIALS A AND B TO PRODUCE *

* THE VECTOR STRING B:=B+COEFF*C*A *
*

oNoNeNe]

a0

B(t) —===>|+|==——=mmm—mm— > B(t):=B(t)+COEFF*C*A(t)

~

*

*

*

*

* | C lreal matrix
* -

* A

* |

* |COEFF | real scalar
*

*

X % Ok o % % X X % X X %

QOO0
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* A(t)------ e et > A(t) *
* *
TAIKKKK AR KA KA KA I AR IA KA KRR KA KAk kkkhkkkkkkhkkkkhkkkhkhkdkkkkkkkkhx
INTEGER NPA,NA,NPB,NB,NPC

INTEGER NPMAX, NAMAX

COMPLEX*8 A (NSTATES,NPMAX+1, NAMAX) , AEXP (NAMAX)

COMPLEX*8 B (NSTATES,NPMAX+1, NAMAX) , BEXP (NAMAX)

REAL*8 C(NSTATES,NSTATES) , COEFF

INTEGER I,J,K,L

[eNoNe]

1 FORMAT (' OVERFLOW OF NAMAX IN SUBROUTINE ADD')
IF (NA+NB.GT.NAMAX) THEN
WRITE (6,1)
PAUSE
END IF

NPC=MAX (NPA, NPB)
DO K=1,NB
DO J=1,NPC+1
IF (J.GT.NPB+1) THEN
DO I=1,NSTATES
B(I,J,K)=(0.,0.)
END DO
END IF
END DO
END DO

DO K=1,NA
BEXP (NB+K) =AEXP (K)
DO J=1,NPC+1
IF (J.LE.NPA+1) THEN
DO I=1,NSTATES
B(I,J,NB+K)=(0.,0)
DO L=1,NSTATES
B(I,J,NB+K)=B(I,J,NB+K)+COEFF*C (I, L)*A(L,J,K)
END DO
END DO
ELSE
DO I=1,NSTATES
B(I,J,NB+K)=(0.,0.)
END DO
END IF
END DO
END DO
NPB=NPC
NB=NB+NA

SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS

[oNONe]

CALL QCKSRT (NB, NPB, BEXP, B, NSTATES, NPMAX, NAMAX)

c COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS
CALL SHRINK (B, BEXP,NPB,NB,0.000001,NSTATES, NPMAX, NAMAX)

RETURN
END !ADD

C *************************************************************
C *************************************************************
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SUBROUTINE QCKSRT (N, NP, ARR, BRR,NSTATES, NPMAX, NAMAX)
Ak kkk kA I Ah kKR kA kIR A IR I A IR KKK R KA KR hok ko kkkkkkkdhkkkkkkkdkkkkkkx

c
c * SORTS A VECCTOR STRING OF EXPONENTIALS IN THE ORDER OF *
c * DEREASING REAL PARTS OF EXPONENTIAL COEFFICIENTS. *
c * TERMS WITH EQUAL REAL PARTS ARE SUBSORTED BY IMAGINARY PARTS *
C ****************************************************************
PARAMETER (M=7,NSTACK=50,FM=7875.,FA=211.,FC=1663.,FMI=1./FM)
COMPLEX*8 A,ARR (NAMAX) , BRR (NSTATES, NPMAX+1, NAMAX)
PARAMETER ( NMAX=50)
COMPLEX*8 B (NMAX, NMAX+1)
INTEGER ISTACK (NSTACK)
LOGICAL L1,L2,L3
JSTACK=0
L=1
IR=N
FX=0.
10 IF (IR-L.LT.M) THEN
DO J=L+1, IR
A=ARR (J)
DO K=1,NP+1
DO M1=1,NSTATES
B (M1, K)=BRR(M1,K, J)
END DO
END DO
Do I=J-1,1,-1
L1=REAL (ARR(I)) .GT.REAL(A)
1L2=REAL (ARR(I)) .EQ.REAL (A)
L3=IMAG (ARR(I)) .GE.IMAG (A)
IF (L1.0OR. (L2.AND.L3))GO TO 12
ARR (I+1)=ARR(I)
DO K=1,NP+1
DO M1=1,NSTATES
BRR (M1, K, I+1) =BRR (M1,K, I)
END DO
END DO
END DO
I=0
12 ARR(I+1)=A

DO K=1,NP+1
DO M1=1,NSTATES
BRR (M1, K, I+1)=B(M1,K)
END DO
END DO
END DO
IF (JSTACK.EQ.0) RETURN
IR=ISTACK (JSTACK)
L=ISTACK (JSTACK-1)
JSTACK=JSTACK-2
ELSE
I=L
J=IR
FX=MOD (FX*FA+FC, FM)
IQ0=L+ (IR-L+1) * (FX*FMI)
A=ARR(IQ)
DO K=1,NP+1
DO Ml1=1,NSTATES
B (M1, K)=BRR (M1,K, IQ)
END DO
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20
21

22

END DO
ARR (IQ)=ARR(L)
DO K=1,NP+1
DO Ml=1,NSTATES
BRR (M1, K, IQ) =BRR (M1, K, L)
END DO
END DO
CONTINUE
IF (J.GT.0) THEN
L1=REAL(A) .GT.REAL (ARR(J))
L2=REAL (3) .EQ.REAL (ARR (J))
L3=IMAG (A) .GT.IMAG (ARR(J))
IF (L1.OR. (L2.AND.L3)) THEN
J=J-1
GO TO 21
END IF
END IF
IF (J.LE.I) THEN
ARR(I)=A
DO K=1,NP+1
DO M1=1,NSTATES
BRR (M1, K, I)=B (M1,K)
END DO
END DO
GO TO 30
END IF
ARR (I)=ARR(J)
DO K=1,NP+1
DO M1=1,NSTATES
BRR (M1, K, I)=BRR (M1,K,J)
END DO
END DO
I=I+1
IF (I.LE.N) THEN
L1=REAL (A) .LT.REAL (ARR(I))
L2=REAL (A) .EQ.REAL (ARR(I))
L3=IMAG(A) .LT.IMAG (ARR(I))
IF (L1.0OR. (L2.AND.L3) ) THEN
I=I+1
GO TO 22
END IF
END IF
IF (J.LE.I) THEN
ARR(J)=A
DO K=1,NP+1
DO Ml=1,NSTATES
BRR (M1, K, J) =B (M1, K)
END DO
END DO
I=J
GO TO 30
END IF
ARR (J) =ARR (I)
DO K=1,NP+1
DO M1=1,NSTATES
BRR (M1, K, J) =BRR (M1, K, I)
END DO
END DO
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J=J-1
GO TO 20
30 JSTACK=JSTACK+2

IF (JSTACK.GT.NSTACK) PAUSE 'NSTACK must be made larger.'
IF (IR-I.GE.I-L)THEN
ISTACK (JSTACK)=IR

ISTACK (JSTACK-1)=I+1
IR=I-1

ELSE
ISTACK (JSTACK)=I-1
ISTACK (JSTACK-1)=L
L=I+1

END IF

END IF

GO TO 10

END !QCKSRT
C e g g F gk ok ok ok ok Kk ok ok ok Kk ok ok ok ok kK ok ok ok kK Kk ok k k ko kR ok ok ok ok Kk kR ok ok ok ok ok ko ok

c Ak Kk ok kk Ak kAR KKK A I KKk Ak kA kA ok k kA kHk ko kX kkkkkkkkkkkkkkkx
FUNCTION DISTANCE (A, B)

'k*********************'k*************************************

Cc
o * COMPUTES DISTANCE BETWEEN A AND B IN THE COMPLEX PLANE *
c kA A Ak kkkkk kA ARk kkkkkkkkkkkkkkkkkkkh kA kkkkkkkkkkkkkkkk
COMPLEX*8 A,B
REAL*8 DISTANCE
DISTANCE=SORT ( (REAL (A) -REAL (B) ) **2+4 (IMAG (A) —~IMAG (B) ) **2)
RETURN
END !DISTANCE
c Ak kkkkkkkkkkkk kR ARk kkk kR kkhkkkk kA ARk khk kR kkkkkkkkkkkkkkkkkkx %
c kR kA KAk KKk kKA E R R KK KKK KRRk Kk kI AR ARk kK kR hkokk ke kkkkkdkkk kX%
SUBROUTINE TRIM_NP(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,THRESH)
c KKK KK A KKK AR A ARR K IR KK KKK KRR KKK KA KKK KKKk KAk ok kk kR kkkkkokk kK
C * REDUCES THE HIGHEST POWER OF t IN THE COEFFICIENT *
C * MATRICES IF THE NORMS OF ALL TERMS IN THESE HIGHER *
c * POWERS ARE LESS THAN THRESH *
C * NPA IS MODIFIED *
c % ok ok ok ok ok 3k ok ok ok ok o ok ok Sk ok ok ok ok ok ok ok o ok ok ok ok ok ok ko ok ok kR ok ko k k Kk ok ek k ok ok k

PARAMETER ( E=2.71828182845904523536)
INTEGER NPMAX, NAMAX
INTEGER NPA,NAA,I,J,K,JMAX
COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)
REAL*8 AR,AI,SIGMA, ATEMP
IF (NPA.EQ. 1) THEN
RETURN
END IF
JMAX=NPA+1
DO J=JMAX,2,-1
DO K=1,NAA
SIGMA=REAL (AEXP (K) )
IF (SIGMA.NE.0.) THEN
DO I=1,NSTATES
AR=REAL(A(I,J,K))
AI=IMAG (A(I,J, K))
ATEMP=SQRT (AR*AR+ATI*AT)
ATEMP=ATEMP* (- (J-1) / (EXSIGMA) ) ** (J-1)
IF (ATEMP.GT.THRESH) THEN
NPA=J-1
RETURN
END IF
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END DO
END IF
_END DO
END DO
RETURN

END !TRIM NP
KA A KKK KA AR AR A AR KRAKKRR KA A KA IR A kA Ak kA khkhk Ak hkhkkhkkkhkkhkhkkhkkkhkhkkkhkkhk

KA KA A KR IAKRA A A KA A I AR A AR K AR I AR A Ak kA hkkkkkhkkhkkkkkhhkkkhkhkkhkhkkkhkkk
SUBROUTINE TRIM NA (A,AEXP,NPA,NAA,NSTATES, NPMAX, NAMAX, THRESH)
A KKK KA KA A AT A KA Rk ko hkkkkkkhkkkkhkkkkhkkkhhkkkdkhkkkkkkkkkhkkkx
* ELIMINATES ANY EXPONENTIAL TERM IN A IF THE NORMS *
* OF ALL THE COEFFICINT ELEMENTS ARE LESS THAN THRESH. *
* A,AEXP AND NA ARE MODIFIED *
KA KA KKK I A KAk IA A A Ik A Ak Kk A Ak kkhkkhkhkhkhkkhkkhhkkhkkkhkkkhkkkhkkkkkkkkkxk
PARAMETER( E=2.71828182845904523536)

INTEGER NPMAX, NAMAX

INTEGER NPA,NAA,I,J,K,M

COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)

REAL*8 AR,AI,SIGMA,ATEMP,AN

M=0

DO K=1,NAA

[eNe]

[eXeRe o Xe!

SIGMA=REAL (AEXP (K) )
AN=0.
DO J=1,NPA+l
DO I=1,NSTATES
AR=REAL(A(I,J,K))
AI=IMAG(A(I,J,K))
ATEMP=SQRT (AR*AR+AT*AT)
IF ((SIGMA.LT.0.) .AND. (J.GT.1)) THEN
ATEMP=ATEMP* (- (J-1) / (EXSIGMA) ) ** (J-1)
END IF
IF (ATEMP.GT.AN) THEN
AN=ATEMP
END IF
END DO
END DO

IF (AN.LT.THRESH) THEN
M=M+1
ELSE
AEXP (K-M) =AEXP (K)
DO J=1,NPA+l
DO I=1,NSTATES
A(I,J,K-M)=A(I,J,K)
END DO
END DO
END IF
END DO
NAA=NAA-M
RETURN
END  !TRIM NA

C Je d % de F Kk T K ok doKk Kk kK Kk sk ok ok sk Kk ok sk ke k sk k ok %k sk gk ok sk K ok Sk ok ok vk ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ke ke ok ok
C % % J %k %k % Kk %k Kk %k K K Kk Kk Kk k Kk Kk Kk s Kk Kk Kk ok ke sk ok sk ok ok sk ok sk sk sk K sk ok ok sk ok e ok ok ke ok ke ko ok kb ke ok

SUBROUTINE SHRINK (A,AEXP,NPA,NAA,EPSILON,NSTATES,NPMAX, NAMAX)
N I T2 TS S S S s s s s e Rty

* COMBINES TERMS IN A VECTOR STRING IF THE EXPONENT COEFFICIENTS *
* ARE WITHIN EPSILON OF EACH OTHER. *
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C ******************************************************************

INTEGER I,J,K,L,NAA,NPA,NSTATES, NPMAX, NAMAX
COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX), AEXP (NAMAX)
REAL*8 EPSILON
J=1
DO I=1,NAA-1
IF (DISTANCE (AEXP (I) ,AEXP (I+1)) .GE.EPSILON) THEN
J=J+1
AEXP (J) =RAEXP (I+1)
DO K=1,NPA+1l
DO L=1,NSTATES
A(L,K,J)=A(L,K, I+1)

END DO
END DO
ELSE

DO K=1,NPA+l
DO L=1,NSTATES
A(L,K,J)=A(L,K,J)+A(L,K, I+1)
END DO
END DO
END IF
END DO
NAA=J
RETURN
END !SHRINK

************************************************************
************************************************************
SUBROUTINE MULT (A, AEXP,NPA,NAA, B, BEXP,NPB, NAB, TEMP, TEMPEXP,

* NSTATES, NPMAX, NAMAX, LT, LN)

************************************************************

MULTIPLIES STRINGS A AND B AND PLACES IT IN B *

NPA AND NPB ARE THE DEGREES OF THE POLYNOMIAL *

COEFFICIENTS OF A AND B RESPECTIVELY. *

NAA AND NAB ARE THE NUMBER OF EXPONENTIAL TERMS IN *

A AND B RESPECTIVELY *

IF LT=1 THEN A-TRANSPOSED IS THE COEFFICIENT *

IF LT=0 THEN A IS THE COEFFICIENT *

IF LN=1 THEN A(-t) IS USED INSTEAD OF A(t) *

IF LN=0 THEN A(t) IS USED *

*

*

*

*

*

*

*

*

[eNe!

B(t) —======m—- >] A(t) |-=——=——- > B(t):=A(t)*B(t)
vector string j=———— | vector string
matrix string

QOO0 00000000000000
¥ Ok %k Ok OF K Ok Ok % Ok F O Ok % A %

***********************************************************
INTEGER NSTATES,NPA,NAA,NPB,NAB, NPC, NAC, NPMAX, NAMAX
COMPLEX*8 A (NSTATES,NSTATES,NSTATES+1,NSTATES) , AEXP (NSTATES)
COMPLEX*8 B (NSTATES, NPMAX+1,NAMAX) , BEXP (NAMAX)

COMPLEX*8 TEMP (NSTATES, NPMAX+1, NAMAX) , TEMPEXP (NAMAX)

INTEGER I,J,K,L,M

INTEGER I1,J1

INTEGER LT, LN

1 FORMAT (' OVERFLOW OF NAMAX IN SUBROUTINE MULT ")
IF (NAA*NAB.GT.NAMAX) THEN
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WRITE(6,1)
PAUSE
END IF

MO O

FORMAT (' OVERFLOW OF NPMAX IN SUBROUTINE MULT')
IF (NPA+NPB.GT.NPMAX) THEN

WRITE (6,2)

PAUSE

END IF

DO K=1,NAB
TEMPEXP (K) =BEXP (K)
DO J=1,NPB+1
DO I=1,NSTATES
TEMP (I,J,K)=B(I,J,K)
END DO
END DO
END DO

NPC=NPA+NPB
NAC=0
DO I=1,NAA
DO J=1,NAB
NAC=NAC+1
BEXP (NAC) = (1-2*LN) *AEXP (I) +TEMPEXP (J)
DO L=1,NPA+1
DO M=1,NPB+1
DO I1=1,NSTATES
B(Il,L+M-1,NAC)=(0.,0.)
END DO
END DO
END DO
DO L=1,NPA+1
DO M=1,NPB+1
DO Il=1,NSTATES
DO J1=1,NSTATES
IF (LT.EQ.0) THEN
B(Il,L+M-1,NAC)=B(Il,L+M-1,NAC)
* +#((1-2*LN) ** (L+1) ) *A(I1l,J1,L,I) *TEMP (J1,M,J)
ELSE
B(Il,L+M-1,NAC)=B(I1,L+M-1,NAC)
* +((1-2*LN) ** (L+1) ) *A(J1,I1,L, I) *TEMP (J1,M, J)
END IF
END DO
END DO
END DO
END DO
END DO
END DO
NPB=NPC
NAB=NAC

SORT INTO DESCENDING VALUES OF REAL PARTS OF EXPONENTS

[eNoNONe:

CALL QCKSRT (NAB,NPB, BEXP,B,NSTATES, NPMAX, NAMAX)
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C COMBINE TERMS WITH CLOSE EXPONENTIAL FACTORS
CALL SHRINK (B, BEXP,NPB,NAB,0.000001,NSTATES, NPMAX, NAMAX)
C
C REMOVE SMALL TERMS
CALL TRIM_NA(B,BEXP,NPB,NAB,NSTATES,NPMAX,NAMAX,0.00001)
C
CALL TRIM_NP(B,BEXP,NPB,NAB,NSTATES,NPMAX,NAMAX,0.00001)
C
RETURN
END !MULT
C ***************************************************************
C ***************************************************************
SUBROUTINE INT T INF (A,AEXP,NPA,NAA,NSTATES,NPMAX, NAMAX)
C ***************************************************************
C * INTEGRATES A VECTOR STRING OF EXPONENTIALS FROM t *
C * TO INFINITY. *
C * NSTATES=NUMBER OF STATE COMPONENTS. *
C * NPA=HIGHEST POWER OF t IN A. *
C * NAA=NUMBER OF EXPONENTIAL TERMS IN A. *
C * STABILITY OF FTILDA MATRIX SHOULD INSURE THAT THE *
C * INTEGRALS EXIST. *
C * *
C * *
C * *
C * A(t)->| INTEGRAL FROM t TO INFINITY OF A(s) ds |->A(t) *
C K e e o e o o e e e e e T e *
C * *
C * *
C * *
C ***************************************************************
INTEGER NPA,NAA,NSTATES, NPMAX, NAMAX
COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)
INTEGER I,J,K
1 FORMAT (' INTEGRAL DOES NOT EXIST')
DO K=1,NAA
ZERO=0.
IF (REAL (AEXP (K) ) .GE.ZERO) THEN
WRITE (6,1)
PAUSE
END IF
END DO
DO K=1,NAA
DO I=1,NSTATES
A(I,NPA+1,K)=-A(I,NPA+1,K)/AEXP (K)
END DO
DO J=NPA,1,-1
DO I=1,NSTATES
A(I,J,K)=-(A(I,J,K)+J*A(I,J+1,K)) /AEXP (K)
END DO
END DO
END DO
CALL TRIM_NP(A,AEXP,NPA,NAA,NSTATES,NPMAX,NAMAX,0.00001)
RETURN
END !'INT T INF
C ********************************************************************
C ********************************************************************
SUBROUTINE INT 0 T(X,A,AEXP,NPA,NAA,NSTATES, NPMAX, NAMAX)
C ********************************************************************
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c * INTEGRATES A VECTOR STRING FROM 0 TO t AND ADDS THE *
o * CONSTANT VECTOR X. *
c * NSTATES=NUMBER OF STATE COMPONENTS. *
o * NPA=HIGHEST POWER OF t IN A. *
c * NAA=NUMBER OF EXPONENTIAL TERMS IN A. *
C * *
C % J % K % % Kk ok % Kk ok sk Kk K ok %k K gk T Kk Kk ok Kk sk Kk ok %k ok %k ke ko 3k ok ok ke sk ok ok ok ok sk ke ok sk ke sk sk ke ok ok ki ko ok ok ok ok ok ok ok

INTEGER NPA,NAA,NSTATES, NPMAX, NAMAX, NSTATEMAX

PARAMETER ( NSTATEMAX=6)

REAL*8 X (NSTATES)

COMPLEX*8 A (NSTATES,NPMAX+1,NAMAX) , AEXP (NAMAX)

COMPLEX*8 C (NSTATEMAX)

COMPLEX*8 ZERO

INTEGER I,J,K
o
1 FORMAT (' MUST INCREASE NSTATEMAX IN INT_0_T ROUTINE')

IF (NSTATES.GT.NSTATEMAX) THEN

WRITE (6,1)

PAUSE

END IF
c
o
2 FORMAT (' OVERFLOW OF NPMAX IN SUBROUTINE INT 0 T')
o

ZERO=(0.,0.)
o
c INITIALIZE INTEGRAL AT STATE DEVIATION FROM TRIM

DO I=1,NSTATES

C(I)=X(I)

END DO
c

DO K=1,NAA

IF (AEXP (K) .NE.ZERO) THEN
DO I=1,NSTATES
A(I,NPA+1,K)=A(I,NPA+1,K)/AEXP (K)
END DO
DO J=NPA,1,-1
DO I=1,NSTATES
A(I,J,K)=(A(I,J,K)=-J*A(I,J+1,K))/AEXP (K)
END DO
END DO
ELSE
IF (NPA+1.GT.NPMAX) THEN
WRITE (6, 2)
PAUSE
END IF
NPA=NPA+1
DO I=1,NSTATES
DO J=NPA+1,2,-1
A(I,J,K)=A(I,J-1,K)/(J-1)
END DO
A(I,1,K)=ZERO
END DO
END IF
DO I=1,NSTATES
C(I)=C(I) -A(I,1,K)
END DO
END DO
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OO

Q

[eRe NN NN ®!

APPEND e~0*t TERM TO SATISFY t=0 CONDITION ON INTEGRAL
NAA=NAA+1
AEXP (NAA) =ZERO
DO I=1,NSTATES
A(I,1,NAR)=C(I)
DO J=2,NPA+1
A(I,J,NAA)=ZERO
END DO

END DO
CALL TRIM NP (A, AEXP,NPA,NAA,NSTATES, NPMAX, NAMAX, 0.00001)

RETURN
END !INT O T
dokkkkkk kR xRk Kk KRk hkkk ok kkdkkdkkkkkkkkkkk kK kkkkxkk

SUBROUTINE ZEROEVAL(S,NPS,NAS, ZE,NSTATES, NPMAX, NAMAX)
KA KRKKK KK A KA KA Rk kk kAR Ak k kA khhkkkkkkhkkkkkkkkkxxk

* EVALUATES A VECTOR STRING OF EXPONENTIALS AT t=0 *
****************************************************
INTEGER NSTATES,NPS,NAS,MPMAX,NAMAX, I, J
COMPLEX*8 S (NSTATES, NPMAX+1, NAMAX)
REAL*8 ZE (NSTATES)
DO I=1,NSTATES

ZE(I)=0.

DO J=1,NAS

ZE (I)=2E(I)+REAL(S(I,1,J))

END DO
END DO
RETURN

END !ZEROEVAL
Kk kkkkkkk kAR kA kkkhkkkk Ak kkhkkkkkhhkkkkkkkkkkkkkkkkkkkkk

SUBROUTINE TESTP(A,Q,R,P,N)
**********************************’k*******************
* TESTS SOLUTION FOR RICCATI EQUATION OBTAINED FROM *
* p=72*71INVERSE BY INSERTING THE SOLUTION BACK INTO *
* THE EQUATION A'*P+P*A+Q+P*R*P=0 AND WRITING OUT *
* ERROR *
***********'k******************************************
REAL*8 A(N,N),Q(N,N),R(N,N),P(N,N),E(100,100)
INTEGER I,J,K,L
FORMAT (' RICCATI ERROR(',I2,',',I2, "y=',E25.17)
DO I=1,N
DO J=1,N
E(IIJ)=Q(IIJ)
DO K=1,N
E(I,J)=E(I,J)+A(K,I) *P (K, J)+A (K, J) *P (K, I)
DO L=1,N
E(I,J)=E(I,J)+P(K,I)*R(K,L)*P(L,J)
END DO
END DO
WRITE(6,1) I,J,E(I,J)
END DO
END DO
RETURN
END ! TESTP
**************************************‘k**********

SUBROUTINE TESTF (A,R,P,F,N)
*************************************************
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TESTS THE SOLUTION FOR FTILDA OBTAINED FROM  *
Z1*EIG*Z1INVERSE BY CALCULATION OF THE *
EQUIVALENT FORM ATILDA+RTILDA*P *
* AND WRITES OUT THE ERROR *
KA A KK A KA KA A KA IIAA KKK A Ak Ak kkkkkkkhkhkkkkkkdhkhkkkkkkk
REAL*8 A(N,N),R(N,N),P(N,N),F(N,N),E(100,100)
INTEGER I,J,K
1 FORMAT (' FTILDA ERROR(',I12,',',I2,')=',E25.17)
DO I=1,N
DO J=1,N
E(I,J)=A(I,J)-F(I,J)
DO K=1,N
E(I,J)=E(I,J)+R(I,K)*P(K,J)
END DO
WRITE(6,1) I,J,E(I,J)
END DO
END DO
RETURN
END ! TESTF
C Ak khkhk kAR A A AR KAk KRk hk kA kkkkkkkkkkhkhkkkhkkkkkkkkx
SUBROUTINE MMULT (C,A,AEXP,NP,NA, NPMAX, NAMAX, N)
o MULTIPLIES STRING A TIME CONCTANT REAL MATRIX C
INTEGER I,K,L,M,N,NPMAX,MAMAX
REAL*8 C(N,N)
COMPLEX*8 A (N,NPMAX+1,NAMAX) , AEXP (NAMAX) , TEMP (100)
DO L=1,NA
DO K=1,NP+1
DO I=1,N
TEMP (I)=0.
DO M=1,N
TEMP (I)=TEMP (I)+C (I,M)*A(M,K, L)
END DO
END DO
DO I=1,N
A(I,K,L)=TEMP (I)
END DO
END DO
END DO
RETURN
END !MMULT

C*****************************************************************
C*****************************************************************

SUBROUTINE WRITEXP (A,AEXP,NP,NA,N)
A KKK AKR KA KR A A A AR AR KA A A AR Rk Ak Ak hkkkhkhkkhkkhkkkkkkkkk

C
C * WRITES OUT STRINGS OF MATRIX EXPONENTIALS *
c

Khkkkhkhkkkhkkhkkkkkhkkhhkhkhkkhkkkhkkkkhkkkkkkkdkhkkkkkkk

eEoNoNe NS
* % %

" INTEGER NA,NP,N
INTEGER I,J,K,L
COMPLEX*8 A(N,N,N+1,N), AEXP (N)
FORMAT (' EXPONENT IS',E25.17,',',E25.17)
FORMAT (' POWER OF t IS ',I2)
FORMAT (* MATRIX IS ')
FORMAT (E25.17, ', ',E25.17)
FORMAT (' ')
FORMAT (' NA=',I2)
FORMAT (' NP=',I2)
FORMAT (' N=',1I2)

Qodou& WK
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A S WN RO

OUTPUT MATRIX EXPONENTIAL
WRITE(6,6) NA
WRITE(6,7) NP
WRITE(6,8) N
DO L=1,NA
WRITE(6,1) REAL(AEXP (L)), IMAG(AEXP (L))
DO K=1,NP+1
WRITE (6,2) K-1
WRITE (6, 3)
DO I=1,N
WRITE (6,4) (REAL(A(I,J,K,L)),IMAG(A(I,J,K,L)),J=1,N)
WRITE (6, 5)
END DO
END DO
END DO

RETURN

END !WRITEXP
Ak k kA Kk kkkkkkkk kA KAk kkkkkkkhhkkk kA Ak kA XXX Ak kkkkkdkkkkhkxkkkkkkk

**************************************************************

SUBROUTINE WRITE_ZQ(Z,ZEXP,NPZ,NAZ,Q, QEXP, NPQ, NAQ, NSTATES,

* NPMAX, NAMAX)

INTEGER NPZ,NAZ,NPQ,NAQ, NSTATES,NPMAX,NAMAX, I,K, L
COMPLEX*8 Z (NSTATES, NPMAX+1,NAMAX) , ZEXP (NAMAX)
COMPLEX*8 Q (NSTATES,NPMAX+1,NAMAX) ,QEXP (NAMAX)

FORMAT (' ")
FORMAT (' NAzZ="',I6," NPz="',1I3)
FORMAT (' NAQ="',I6,"' NPQ="',I3)

FORMAT(' 2(',I2,',',12,',',16,')=',E25.17,' , ',E25.17)
FORMAT (' o(',I2,',',I2,',',16,')="',E25.17," , ',E25.17)
FORMAT (' EXPONENT=',E25.17,',',E25.17)
WRITE (6,1)
WRITE (6,2) NAZ,NPZ
WRITE (6,3) NAQ,NPQ
WRITE (6,1)
DO L=1,NAZ
WRITE (6,1)
WRITE (6,6) REAL(ZEXP (L)), IMAG(ZEXP (L))
DO K=1,NPZ+1
DO I=1,NSTATES
WRITE(6,4) I,K,L,REAL(Z(I,K,L)),IMAG(Z(I,K,L))
END DO
END DO
END DO
WRITE (6,1)
DO L=1,NAQ
WRITE (6,1)
WRITE (6, 6) REAL(QEXP (L)), IMAG (QEXP (L))
DO K=1,NPQ+1
DO I=1,NSTATES
WRITE(6,5) I,K,L,REAL(Q(I,K,L)),IMAG(Q(I,K,L))
END DO
END DO
END DO
RETURN

END !WRITE_ ZQ
e T 22 S S AR L S L L LR L R R R bbb ol
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C Tk hkk kA kA khkkkhkkkkkkkhkdhkkkhkhkhkkkhkkkkkkhkkkhkkhkkdkhkhkhkkhkhhkkkhkkkkxk

C % % % K J Kk Kk Kk K K Kk k Kk K ok Kk %k Kk k ok k kK Kk ok Kk k ok k sk ok ok ok Kk kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
C**********************************************************************

2Z_RG - The eispack eigenvalue/eigenvector routines.
zZ_ELMHES

ZZ_HQR

zZ_ELTRAN

Z2Z_HQR2

ZZ_BALBAK

Y sk K % K d Kk Kk %k Kk Kk %k K %k Kk %k ok %k gk ok sk ok Kk %k ok ok ok ok ok ok ok ok ke ok ok ke ok ok ok ok ok ok ok ok ke

THIS ROUTINE CONTAINS GENERALIZED EIGENVECTOR MODIFICATIONS MADE
B. MEARS 11/14/82

Qo000 000000n

SUBROUTINE ZZ_RG(NM,N,A,WR,WI,MATZ,Z,IV1,FV1, IERR)

Q

IMPLICIT DOUBLE PRECISION (A-H,0-2)

INTEGER N,NM, IS1,IS2, IERR,MATZ

DIMENSION A (NM,N),WR(N),WI(N),Z(NM,N),FV1(N)
INTEGER IV1 (N)

THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF
SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK)
TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED)

OF A REAL GENERAL MATRIX.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX A,
A CONTAINS THE REAL GENERAL MATRIX,

MATZ IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF
ONLY EIGENVALUES ARE DESIRED, OTHERWISE IT IS SET TO
ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS.

ON OUTPUT-

WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
RESPECTIVELY, OF THE EIGENVALUES. COMPLEX CONJUGATE
PAIRS OF EIGENVALUES APPEAR CONSECUTIVELY WITH THE
EIGENVALUE HAVING THE POSITIVE IMAGINARY PART FIRST,

7 CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS
IF MATZ IS NOT ZERO. IF THE J-TH EIGENVALUE IS REAL, THE
J-TH COLUMN OF Z CONTAINS ITS EIGENVECTOR. IF THE J-TH
EIGENVALUE IS COMPLEX WITH POSITIVE IMAGINARY PART, THE

J-TH AND (J+1)-TH COLUMNS OF Z CONTAIN THE REAL AND
IMAGINARY PARTS OF ITS EIGENVECTOR. THE CONJUGATE OF THIS
VECTOR IS THE EIGENVECTOR FOR THE CONJUGATE EIGENVALUE,
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QOO0 0000

10

20

50

*DECK

QOO0 000000000000

IERR IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN
ERROR COMPLETION CODE DESCRIBED IN SECTION 2B OF THE
DOCUMENTATION. THE NORMAL COMPLETION CODE IS ZERO,

IVl AND FV1l ARE TEMPORARY STORAGE ARRAYS.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

IF (N .LE. NM) GO TO 10
IERR = 10 * N
GO TO 50

CALL ZZ_BALANC(NM,N,A,ISl,ISZ,FVl)
CALL 2Z_ELMHES(NM,N,IS1,IS2,A,IV1)

IF (MATZ .NE. 0) GO TO 20
Xxkkkkkxkk* FIND EIGENVALUES ONLY ****kkkkkx

CALL ZZ_HQR(NM,N,ISI,ISZ,A,WR,WI,IERR)

GO TO 50
xk*k*%*****%* FIND BOTH EIGENVALUES AND EIGENVECTORS ***XXxXkkk%

CALL ZZ_ ELTRAN(NM,N,IS1,IS2,A,IV1,2)
CALL 2Z_HQR2(NM,N,IS1,IS2,A,WR,WI,Z,IERR)
IF (IERR .NE. 0) GO TO 50

CALL 2ZZ_BALBAK(NM,N,ISi,IS2,FV1,N,Z)
RETURN

xkkkkkkkx*x* TLAST CARD OF ZZ RG ***x*kkkkx

END
zZ_BALANC

SUBROUTINE ZZ_BALANC (NM, N, A, LOW, IGH, SCALE)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

INTEGER I,J,K,L,M,N,JJ,NM, IGH, LOW, IEXC

DIMENSION A (NM,N),SCALE (N)

LOGICAL NOCONV

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_BALANCE,

NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

THIS SUBROUTINE ZZ_ BALANCES A REAL MATRIX AND ISOLATES
EIGENVALUES WHENEVER POSSIBLE.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX,

A CONTAINS THE INPUT MATRIX TO BE ZZ_BALANCED.
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ON OUTPUT-
A CONTAINS THE ZZ_ BALANCED MATRIX,

LOW AND IGH ARE TWO INTEGERS SUCH THAT A(I,J)
IS EQUAL TO ZERO IF
(1) I IS GREATER THAN J AND
(2) J=1,...,LO0W-1 OR I=IGH+l,...,N,

SCALE CONTAINS INFORMATION DETERMINING THE
PERMUTATIONS AND SCALING FACTORS USED.

SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THROUGH IGH
HAS BEEN zZ_ BALANCED, THAT P(J) DENOTES THE INDEX INTERCHANGED
WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS

OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(I,J). THEN

SCALE(J) = P(J), FOR J = 1,...,LOW-1
= D(J,J), J = LOW,...,IGH
= P(J) J = IGH+1,...,N.

THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+1,
THEN 1 TO LOW-1.

NOTE THAT 1 IS RETURNED FOR IGH IF IGH IS ZERO FORMALLY.

THE ALGOL PROCEDURE EXC CONTAINED IN ZZ_ BALANCE APPEARS IN
ZZ_BALANC IN LINE. (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS
K,L HAVE BEEN REVERSED.)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

*k%kk*xkk*x** RADIX IS A MACHINE DEPENDENT PARAMETER SPECIFYING
THE BASE OF THE MACHINE FLOATING POINT REPRESENTATION.

QOO0 000000000n
I

kkkkkkhkkkkx

RADIX = 2.
c
B2 = RADIX * RADIX
K=1
L=N
GO TO 100
C *%%%k*x**x*%* IN-LINE PROCEDURE FOR ROW AND
o COLUMN EXCHANGE ** %k %% k%
20 SCALE(M) = J
IF (J .EQ. M) GO TO 50
o
DO 30I=1, L
F = A(I,J)
A(I,J) = A(I,M)
A(I,M) = F
30 CONTINUE
c
DO 40 I = K, N
F = A(J, 1)
A(J,I) = A{(M,I)
AM,I) = F
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40 CONTINUE

C
50 GO TO (80,130), IEXC
o k*xx*kk*k** SEARCH FOR ROWS ISOLATING AN EIGENVALUE
o AND PUSH THEM DOWN ***xk* %%
80 IF (L .EQ. 1) GO TO 280
L=1L-1
C * % %k % %k k k k% FOR J=L STEP _1 UNTIL 1 DO —- * k kK kkKkkKxk
100 DO 120 JJ =1, L
J=L+1-J37
c
DO 110 I =1, L
IF (I .EQ. J) GO TO 110
IF (A(J,I) .NE. 0.0) GO TO 120
110 CONTINUE
o
M=1L
IEXC = 1
GO TO 20
120 CONTINUE
c
GO TO 140
c X% %xk*xx*** SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE
c AND PUSH THEM LEFT **kkxk*xx%%
130 K = K + 1
c
140 DO 170 J = K, L
c
DO 150 I = K, L
IF (I .EQ. J) GO TO 150
IF (A(I,J) .NE. 0.0) GO TO 170
150 CONTINUE
c
M=K
IEXC = 2
GO TO 20
170 CONTINUE
C k%% %xx***%* NOW ZZ BALANCE THE SUBMATRIX IN ROWS K TO L **¥*xxkikx
DO 180 I =K, L
180 SCALE(I) = 1.0
c X% %%k kkx** TTERATIVE LOOP FOR NORM REDUCTION * %% %%k %%
190 NOCONV = .FALSE.
o
DO 270 I =K, L
c=290.0
R = 0.0
o
DO 200 J =K, L
IF (J .EQ. I) GO TO 200
C = C + ABS(A(J,I))
R = R + ABS(A(I,J))
200 CONTINUE
C x*xkk**k*%k* GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW **k*%*k*x

IF (C .EQ. 0.0 .OR. R .EQ. 0.0) GO TO 270
G = R / RADIX
F 1.0
S =C+R
210 IF (C .GE. G) GO TO 220

[}
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220
230

240

250

260

270

280

QOO0 00000000000

F = F * RADIX
C=C * B2
GO TO 210
G = R * RADIX

IF (C .LT. G) GO TO 240
F = F / RADIX
cC=C¢C/ B2
GO TO 230
kkkkkkkkk*x NOW ZZ BALANCE *k*xkkxkkx*k
IF ({(C+R) / F .GE. 0.95 * §) GO TO 270
G=1.0/F
SCALE(I) SCALE(I) * F
NOCONV = .TRUE.

1

DO 250 J = K, N

A(I,J) = A(I,J) * G

DO 260 J =1, L

A(J,I) = A(J,I) *F
CONTINUE

IF (NOCONV) GO TO 190

LOW K

IGH = L

RETURN

*kkkkkkxkx LAST CARD OF Z2Z BALANC **Xxkkxkkk*%
END

22_ELMHES

SUBROUTINE ZZ_ ELMHES (NM, N, LOW, IGH, A, INT)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A (NM,N), INT(IGH)

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZz_ELMHES,
NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE
REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS
LOW THROUGH IGH TO UPPER HESSENBEZZ_ RG FORM BY
STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX,

LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING
SUBROUTINE 27z BALANC. IF 27Z_BALANC HAS NOT BEEN USED,
SET LOW=1, IGH=N,
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A CONTAINS THE INPUT MATRIX.

ON OUTPUT-

A CONTAINS THE HESSENBEZZ RG MATRIX. THE MULTIPLIERS
WHICH WERE USED IN THE REDUCTION ARE STORED IN THE
REMAINING TRIANGLE UNDER THE HESSENBEZZ_RG MATRIX,

INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS
INTERCHANGED IN THE REDUCTION.
ONLY ELEMENTS LOW THROUGH IGH ARE USED.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISICON, AZZ RGONNE NATIONAL LABORATORY

QOO0 0000000000000

LA = IGH - 1
KPl = LOW + 1
IF (LA .LT. KP1l) GO TO 200

DO 100 J = M, IGH
IF (ABS(A(J,MM1)) .LE. ABS(X)) GO TO 100
X = A(J,MM1)
I =24
100 CONTINUE

INT (M) = I
IF (I .EQ. M) GO TO 130
o X% %% kx**x*x*%x INTERCHANGE ROWS AND COLUMNS OF A **¥Xkikkx*

DO 110 J = MM1, N
Y = A(I,J)
A(I,J) = A(M,J)
A(M,J) = Y

110 CONTINUE

DO 120 J = 1, IGH
Y = A(J, 1)
A(J,I) = A(J,M)
A(I,M) = Y
120 CONTINUE
C kkkkkkkkk*x END INTERCHANGE * % %k % Kk Kk Kk Kk Kk k
130 IF (X .EQ. 0.0) GO TO 180
MP1 = M + 1

DO 160 I = MP1, IGH
Y = A(I,MM1)
IF (Y .EQ. 0.0) GO TO 160
Y=Y/ X
A(I,MM1) =Y

DO 140 J =M, N
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C

c

140 A(I,J) = A(I,J) - Y * A(M,J)
DO 150 J = 1, IGH

150 A(J,M) = A(J,M) + Y * A(J,I)

160 CONTINUE

180 CONTINUE

200 RETURN

xkk*kkkkxx* LAST CARD OF %2 ELMHES **k*xk*xx*xx
END

*DECK 2ZZ_HQR

C
C
C

c

QOO0 000000000000

SUBROUTINE 2Z_HOR (NM,N, LOW, IGH, H, WR, WI, IERR)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
INTEGER EN, ENM2

DIMENSION H(NM,N),WR(N),WI(N)
DOUBLE PRECISION NORM, MACHEP
LOGICAL NOTLAS

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_HQR,
NUM. MATH. 14, 219-231(1970) BY MARTIN, PETERS, AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).

THIS SUBROUTINE FINDS THE EIGENVALUES OF A REAL
UPPER HESSENBEZZ_RG MATRIX BY THE QR METHOD.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX,

LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ BALANCING
SUBROUTINE 2Z_BALANC. IF 2Z_BALANC HAS NOT BEEN USED,
SET LOW=1, IGH=N,

H CONTAINS THE UPPER HESSENBEZZ_RG MATRIX. INFORMATION ABOUT
THE TRANSFORMATIONS USED IN THE REDUCTION TO HESSENBEZZ_RG
FORM BY 22 ELMHES OR ORTHES, IF PERFORMED, IS STORED
IN THE REMAINING TRIANGLE UNDER THE HESSENBEZZ_RG MATRIX.

ON OUTPUT-

H HAS BEEN DESTROYED. THEREFORE, IT MUST BE SAVED
BEFORE CALLING 22 HQR IF SUBSEQUENT CALCULATION AND
BACK TRANSFORMATION OF EIGENVECTORS IS TO BE PERFORMED,

WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
RESPECTIVELY, OF THE EIGENVALUES. THE EIGENVALUES
ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS
OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE
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QOO0 0000000000

(@]

40

50

60

70

80

100

HAVING THE POSITIVE IMAGINARY PART FIRST. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT
FOR INDICES IERR+1,...,N,

IERR IS SET TO
ZERO FOR NORMAL RETURN,
J IF THE J-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

X**%kxkk*** MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

*kok ok dokok Kok ok
MACHEP = 2,**(-47)

IERR
NORM =
K=1
xkx*%*xk**x* STORE ROOTS ISOLATED BY 2Z_BALANC

AND COMPUTE MATRIX NORM **¥*xx¥kx%
DO 50 I =1, N

0
0.0

DO 40 J = K, N

NORM = NORM + ABS(H(I,J))
K=1
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50
WR(I) = H(I,I)
WI(I) = 0.0
CONTINUE
EN = IGH
T=20.0

x*k***x*kk**%x SEARCH FOR NEXT EIGENVALUES **X¥Xkkk%x
IF (EN .LT. LOW) GO TO 1001
ITS = 0
NA = EN - 1
ENM2 = NA - 1
xk*xkk*kkx* LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
FOR L=EN STEP -1 UNTIL LOW DO —— ¥¥*¥xkxkkix
DO 80 LL = LOW, EN
L = EN + LOW - LL
IF (L .EQ. LOW) GO TO 100
S = ABS(H(L-1,L-1)) + ABS(H(L,L))
IF (S .EQ. 0.0) S = NORM
IF (ABS(H(L,L-1)) .LE. MACHEP * S) GO TO 100
CONTINUE
* % Kk %k Kk Kk kx k kX FORM SHIFT * % Kk Kk Kk k Kk k k)
X = H(EN,EN)
IF (L .EQ. EN) GO TO 270
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L .EQ. NA) GO TO 280
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IF (ITS .EQ. 30) GO TO 1000

IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
C Xk kkkkkkx* FORM EXCEPTIONAL SHIFT k**%kkkkkx

T=T+ X

DO 120 I = LOW, EN
120 H(I,I) = H(I,I) - X

ABS (H(EN,NA)) + ABS(H(NA,ENM2))
0.75 * §
= X
= -0.4375 * § * §
130 ITS = ITS + 1 :
Xkkkkxkxk* L,OOK FOR TWO CONSECUTIVE SMALL

ESKX®n

C
C SUB~DIAGONAL ELEMENTS.
c FOR M=EN-2 STEP -1 UNTIL L DO == **X#kkkkxx
DO 140 MM = L, ENM2
M = ENM2 + L - MM
722 = H(M,M)
R=X - 22
S =Y - 22
P=(R*S -W / BM+t1,M) + H(M, M+1)
Q = H(M+1,M+1) - 22 - R - S
R = H(M+2,M+1)
S = ABS(P) + ABS(Q) + ABS(R)
P=P/ S
Q=0Q/ s
R=R/ S
IF (M .EQ. L) GO TO 150
IF (ABS(H(M,M-1)) * (ABS(Q) + ABS(R)) .LE. MACHEP * ABS(P)
X * (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+1,M+1)))) GO TO 150
140 CONTINUE
c
150 MP2 = M + 2
C

DO 160 I = MP2, EN
H(I,I-2) = 0.0
IF (I .EQ. MP2) GO TO 160
H(I,I-3) = 0.0
160 CONTINUE
c *kk*kk*x*x* DOUBLE QR STEP INVOLVING ROWS L TO EN AND
C COLUMNS M TO EN ***Xx&kkkkkk
DO 260 K = M, NA
NOTLAS = K .NE. NA
IF (K .EQ. M) GO TO 170

P = H(K,K-1)
Q = H(K+1,K-1)
R=20.0

IF (NOTLAS) R = H(K+2,K-1)

X = ABS(P) + ABS(Q) + ABS(R)
IF (X .EQ. 0.0) GO TO 260
P=P /X
Q=0 /X
R=R/ X

170 S = SIGN(SQRT (P*P+Q*Q+R*R),P)
IF (K .EQ. M) GO TO 180
H(K,K-1) = =8 * X
GO TO 190
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180 IF (L .NE. M) H(K,K-1) = -H(K,K-1)
190 P="P+ S
X=P /S
Y=Q/ s
zZ =R / S
Q=0Q/P
R=R /P
C * Kk kkkkkkkk ROW MODIFICATION *kkkhkkkkk*k
DO 210 J = K, EN
P = H(K,J) + Q * H(K+1,J)
IF (.NOT. NOTLAS) GO TO 200
P =P + R * H(K+2,J)
H(K+2,J) = H(K+2,J) - P * ZZ
200 H(K+1,J) = H{(K+1,J) - P * Y
H(K,J) = H(K,J) - P * X

210 CONTINUE

J = MINO (EN, K+3)
C % % %k %k Kk k Kk ok kk COLUMN MODIFICATION * Kk Kk ok k ok ok ok kk
DO 230 I =1L, J
P =X * H(I,K) + Y * H(I,K+1)
IF (.NOT. NOTLAS) GO TO 220
P =P + 2Z * H(I,K+2)
H(I,K+2) = H(I,K+2) - P * R
220 H(I,K+l) = H(I,K+l) - P * Q
H(I,K) = H(I,K) - P
230 CONTINUE

260 CONTINUE

GO TO 70
c xkkkkkkxkx ONE ROOT FOQUND **¥kkkxkxx
270 WR{(EN) = X + T
WI(EN) = 0.0
EN = NA
GO TO 60
c Xkkkkkkkk* TWO ROOTS FOUND ****xkkkskx
280 P = (Y - X) / 2.0
Q=P *P +W
ZZ = SQRT(ABS(Q))
X=X+T1T
IF (Q .LT. 0.0) GO TO 320
c *kkkkxkkkkx REAI, PATR **xkkkkkkkxk
ZzZ = P + SIGN(ZZ,P)
WR(NA) = X + Z2
WR(EN) = WR(NA)
IF (22 .NE. 0.0) WR(EN) = X - W / ZZ
WI(NA) = 0.0
WI(EN) = 0.0
GO TO 330
c kkkkkkkkk*x COMPLEX PAIR **x**kkxkkx%
320 WR(NA) X+ P
WR (EN) X+ P
WI (NA) Z2Z
WI (EN) -2z
330 EN = ENM2

GO TO 60
Cc kxkkkk*k**** SET ERROR -- NO CONVEZZ_RGENCE TO AN
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c EIGENVALUE AFTER 30 ITERATIONS ****xXkxxx
1000 IERR = EN
1001 RETURN

c kkkkkxkx*x LAST CARD OF 2ZZ HQR ****xkkxkx
END
*DECK ZZ_ELTRAN
C
O e e
c

SUBROUTINE ZZ_ ELTRAN (NM,N, LOW, IGH, A, INT, 2)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A (NM, IGH),Z(NM,N)
DIMENSION INT(IGH)

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMTRANS,
NUM. MATH. 16, 181-204(1970) BY PETERS AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1871).

THIS SUBROUTINE ACCUMULATES THE STABILIZED ELEMENTARY
SIMILARITY TRANSFORMATIONS USED IN THE REDUCTION OF A
REAL GENERAL MATRIX TO UPPER HESSENBEZZ RG FORM BY Z2Zz_ ELMHES.

ON INPUT-

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX,

LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING
SUBROUTINE ZZ_ BALANC. IF 2ZZ_BALANC HAS NOT BEEN USED,
SET LOW=1, IGH=N,

A CONTAINS THE MULTIPLIERS WHICH WERE USED IN THE
REDUCTION BY 2z ELMHES 1IN ITS LOWER TRIANGLE
BELOW THE SUBDIAGONAL,

INT CONTAINS INFORMATION ON THE ROWS AND COLUMNS
INTERCHANGED IN THE REDUCTION BY ZZ_ ELMHES.
ONLY ELEMENTS LOW THROUGH IGH ARE USED.
ON OUTPUT-

Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
REDUCTION BY ZZ ELMHES. -

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

QOO0 000000000000

**xkk**xx%x INITIALIZE Z TO IDENTITY MATRIX *****kkxxx
DO 80 I =1, N

(@'

DO 60 J =1, N
60 Z(I,J) = 0.0

-171-

McDonnell Douglas Corporation




Report MDC 95P0058 Nonlinear Control of Missiles

Z(I,I) = 1.0
80 CONTINUE

KL = IGH - LOW - 1
IF (KL .LT. 1) GO TO 200
C kkkkkkk k%% FOR MP=IGH-1 STEP -1 UNTIL LOW+1l DO —— *¥*Xkkdkkkx
DO 140 MM = 1, KL
MP = IGH - MM
MP1 = MP + 1

C
DO 100 I = MP1l, IGH
100 Z(I,MP) = A(I,MP-1)
C
I = INT(MP)
IF (I .EQ. MP) GO TO 140
C
DO 130 J = MP, IGH
Z(MP,J) = Z2(I,J)
z2(1,J) = 0.0
130 CONTINUE
C
Z(I,MpP) = 1.0
140 CONTINUE
C
200 RETURN
c * % % %k %k %k k k %k Kk LAST CARD OF YA ELTRAN * % %k Kk Kk k %k k Kk Kk
END
*DECK 22_HQR2
C
C __________________________________________________________________
C
SUBROUTINE 2ZZ_ HQR2 (NM,N, LOW, IGH, H, WR,WI, Z, IERR)
C
C Note: Intrinsic functions REAL, AIMAG, and CMPLX have been replaced
C by their DOUBLE PRECISION equivalents DREAL, DIMAG, and DCMPLX.
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMPLEX*16 23
INTEGER EN, ENM2
DIMENSION H(NM,N),WR(N),WI(N),Z(NM,N)
DOUBLE PRECISION NORM,MACHEP
LOGICAL NOTLAS
C
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ_HQRZ,
C NUM. MATH. 16, 181-204(1970) BY PETERS AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
C
C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C OF A REAL UPPER HESSENBEZZ_RG MATRIX BY THE QR METHOD. THE
C EIGENVECTORS OF A REAL GENERAL MATRIX CAN ALSO BE FQUND
C IF Z2Z_ELMHES AND ZZ_ELTRAN OR ORTHES AND ORTRAN HAVE
C BEEN USED TO REDUCE THIS GENERAL MATRIX TO HESSENBEZZ_RG FORM
C AND TO ACCUMULATE THE SIMILARITY TRANSFORMATIONS.
C
C ON INPUT-
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
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OO0 00000000000000

Q

ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT,

N IS THE ORDER OF THE MATRIX,

LOW AND IGH ARE INTEGERS DETERMINED BY THE ZZ_BALANCING
SUBROUTINE ZZ BALANC. IF ZZ_BALANC HAS NOT BEEN USED,
SET LOW=1l, IGH=N,

H CONTAINS THE UPPER HESSENBEZZ_ RG MATRIX,

7Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED BY ZZ_ELTRAN
AFTER THE REDUCTION BY 2ZZ_ELMHES, OR BY ORTRAN AFTER THE
REDUCTION BY ORTHES, IF PERFORMED. IF THE EIGENVECTORS
OF THE HESSENBEZZ_ RG MATRIX ARE DESIRED, Z MUST CONTAIN THE
IDENTITY MATRIX.

ON OUTPUT-
H HAS BEEN DESTROYED,

WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
RESPECTIVELY, OF THE EIGENVALUES. THE EIGENVALUES
ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS
OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE
HAVING THE POSITIVE IMAGINARY PART FIRST. IF AN
ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT
FOR INDICES IERR+1,...,N,

7Z CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGENVECTORS.
IF THE I-TH EIGENVALUE IS REAL, THE I-TH COLUMN OF 2
CONTAINS ITS EIGENVECTOR. IF THE I-TH EIGENVALUE IS COMPLEX
WITH POSITIVE IMAGINARY PART, THE I-TH AND (I+1)-TH
COLUMNS OF Z CONTAIN THE REAL AND IMAGINARY PARTS OF ITS
EIGENVECTOR. THE EIGENVECTORS ARE UNNORMALIZED. IF AN
ERROR EXIT IS MADE, NONE OF THE EIGENVECTORS HAS BEEN FOUND,

IERR IS SET TO
ZERO FOR NORMAL RETURN,
J IF THE J-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS.

ARITHMETIC IS REAL EXCEPT FOR THE REPLACEMENT OF THE ALGOL
PROCEDURE CDIV BY COMPLEX DIVISION.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

*kxkk*k*kkx**x MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.

% Kk Kk ok kok ok ok kk

MACHEP = 2.**(-47)

IERR =
NORM

([
o o
o
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Qa0

40

50

60

70

80

100

120

130

K=1
Xk kkx%x%x*x** STORE ROOTS ISOLATED BY ZZ BALANC
AND COMPUTE MATRIX NORM **%* Xk

DO 50 I =1, N

DO 40 J = K, N

NORM = NORM + ABS(H(I,J))
K=1I
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50
WR(I) = H(Il I)
WI(I) = 0.0
CONTINUE
EN = IGH
T = 0.0

k% *kkkk*** SEARCH FOR NEXT EIGENVALUES **X%Xkxk*
IF (EN .LT. LOW) GO TO 340
ITS = 0
NA = EN - 1
ENM2 = NA - 1
x**xk*kx**%x LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
FOR L=EN STEP -1 UNTIL LOW DO == **%xkxkkxx
DO 80 LL = LOW, EN
L = EN + LOW - LL
IF (L .EQ. LOW) GO TO 100
S = ABS(H(L-1,L-1)) + ABS(H(L,L))
IF (S .EQ. 0.0) S = NORM
IF (ABS(H(L,L-1)) .LE. MACHEP * S) GO TO 100
CONTINUE
* %k %k Kk %k % Kk k k% E‘ORM SHIFT * % %k Kk k Kk ok Kk k ok
X = H(EN,EN)
IF (L .EQ. EN) GO TO 270
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L .EQ. NA) GO TO 280
IF (ITS .EQ. 30) GO TO 1000
IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
% % %k % %k Kk k k %k %k FORM EXCEPTIONAL SHIFT * Kk kkkkkkk*k
T=T+ X

DO 120 I = LOW, EN

H(I,I) = H(I, I) - X

S = ABS(H(EN,NA)) + ABS(H(NA,ENM2))
X=0.75 * 8

Y =X

W= -0.4375 * § * S

ITS = ITS + 1
*xx%x*x*** LOOK FOR TWO CONSECUTIVE SMALL
SUB-DIAGONAL ELEMENTS.
FOR M=EN-2 STEP -1 UNTIL L DO —=— **%xkxkxix%
DO 140 MM = L, ENM2
M =ENM2 + L - MM

ZZ = H(M,M)
R=X - 22
S =Y - 22
P=(R*S ~W / H(M1,M + H(MMI)
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H(M+1,M+1) - 22 - R - S
H(M+2,M+1)
ABS(P) + ABS(Q) + ABS(R)
P/ S
Q/ S
R/ S
IF (M .EQ. L) GO TO 150
IF (ABS(H(M,M-1)) * (ABS(Q) + ABS(R)) .LE. MACHEP * ABS(P)
X * (ABS(H(M-1,M-1)) + ABS(ZZ) + ABS(H(M+1,M+1)))) GO TO 150
140 CONTINUE .

[

WO YN WO

C
150 MP2 = M + 2
o
DO 160 I = MP2, EN
H(I,I-2) = 0.0
IF (I .EQ. MP2) GO TO 160
H(I,I-3) = 0.0
160 CONTINUE
C *kkk*xk*x*x** DOUBLE QR STEP INVOLVING ROWS L TO EN AND
C COLUMNS M TO EN **k%kkkkx*
DO 260 K = M, NA
NOTLAS = K .NE. NA
IF (K .EQ. M) GO TO 170
P = H(K,K-1)
Q = H(K+1,K-1)
R=0.0
IF (NOTLAS) R = H(K+2,K-1)
X = ABS(P) + ABS(Q) + ABS(R)
IF (X .EQ. 0.0) GO TO 260
P=P /X
Q=0/X
R=R /X
170 S = SIGN(SQRT (P*P+Q*Q+R*R),P)
IF (K .EQ. M) GO TO 180
H(K,K-1) = -8 * X
GO TO 190
180 IF (L .NE. M) H(K,K-1) = -H(K,K-1)
190 P=P+ 8§
X=P/ S
Y=0Q/S8
22 =R / S
Q=Q /P
R=R /P
C * kX Kk ok kkkkk ROW MODIFICATION %* %k %k %k %k Kk ok kk ok
DO 210 J =K, N
P = H(K,J) + Q * H(K+1,J)
IF (.NOT. NOTLAS) GO TO 200
P =P + R * H(K+2,J)
H(K+2,J) = H(K+2,J) - P * 22
200 H(K+1,J) = H(K+1,J) - P * Y
H(K,J) = H(K,J) - P * X
210 CONTINUE
C

J = MINO (EN, K+3)
C kkkkhkkkkkk COLUMN MODIFICATION % J %k Kk ke k ok ok ok k
DO 230 I =1, J
P =X * H(I,K) + Y * H(I, K+1l)
IF (.NOT. NOTLAS) GO TO 220
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P =P + 22
H(I,K+2) =
H(I,K+1l) =
H(I,K) = H(I,K)
230 CONTINUE
o Xkxkkx*kk* ACCUMULATE TRANSFORMATIONS **X %%k ik
DO 250 I = LOW, IGH
P=3X* 2(I,K) + Y * 2(I,K+1)
IF (.NOT. NOTLAS) GO TO 240
P =P + 22 * 2(I,K+2)
Z(I,K+2) = Z(I,K+2) -
Z(I,K+1) = Z(I,K+1) -
zZ(I,K) = Z(I,K) - P
CONTINUE

* H(I,K+2)
H(I,K+2) - P *
H(I,K+1) - P *
- P

220

P * R
240 P *Q

250

260 CONTINUE
GO TO 70
C * Kk k k ok ok kkkk ONE ROOT FOUND Akkkkkkkk*k
270 H(EN,EN) = X + T
WR (EN) = H(EN,EN)
WI (EN) 0.0
EN = NA
GO TO 60
C *Kkhkhkhkkkkkk TWO ROOTS FOUND * Kk %k %k k kK kkk
280 P = (Y - X) / 2.0
Q=P *P + W
72 = SQRT(ABS(Q))
H(EN,EN) = X + T
X = H(EN,EN)
H(NA,NA) =Y + T
IF (Q .LT. 0.0) GO TO 320
C * % Kk Kk Kk %k %k k k k REAL PAIR * % %k %k % %k %k k Kk k
77 = P + SIGN(ZZ,P)
WR(NA) = X + Z2
WR (EN) WR (NA)
IF (2Z .NE. 0.0) WR(EN) =
WI (NA) 0.0
WI(EN) = 0.0
H (EN, NA)
= ABS(X) + ABS(ZZ)
X/ S
2z / S
SQRT (P*P+Q*Q)
=P /R
=Q /R
C *kkkkkkkkk*x ROW MODIFICATION ***kkkkkkk

X - W/ 22

OB o BV I -
il

290

300

DO 290 J =
22 =
H(NA,J)
H(EN, J)

CONTINUE

* %k k Kk k kk kkk

DO 300 I =
22 =
H(I,NA)
H(I,EN)

CONTINUE

NA, N

H(NA, J)

= Q * 2Z + P * H(EN,J)
= Q * H(EN,J) - P * 22

COLUMN MODIFICATION ***k*k*kx*
1, EN .

H(I,NA)

=Q * 22 + P * H(I,EN)
= Q * H(I,EN) - P * 2%
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c *kkkkxk*k%* ACCUMULATE TRANSFORMATIONS **X*** XXXk
DO 310 I = LOW, IGH
2Z = Z2(I,NA)

Z(I,NA) = Q * 22 + P * Z(I,EN)
Z(I,EN) = Q * Z(I,EN) - P * ZZ
310 CONTINUE
c
GO TO 330
c kK kkkkkkk* COMPLEX PAIR **kkkkkkk%
320 WR(NA) = X + P
WR(EN) = X + P
WI(NA) = ZZ
WI(EN) = -22
330 EN = ENM2
GO TO 60
c *kkkkkk*kx*x ALI, ROOTS FOUND. BACKSUBSTITUTE TO FIND
Cc VECTORS OF UPPER TRIANGULAR FORM ** X% Xk¥kkx
340 IF (NORM .EQ. 0.0) GO TO 1001
c kkkkkkkx** FOR EN=N STEP -1 UNTIL 1 DO —— **kkkkkkk*

DO 800 NN = 1, N
EN = N + 1 - NN
P = WR(EN)
Q = WI(EN)
NA = EN - 1
IF (Q) 710, 600, 800

C *hkhkkkkkkkk REAL V‘ECTOR * %k %k %k ok k kkxk
600 M = EN

H(EN,EN) = 1.0
IF (NA .EQ. 0) GO TO 800

c kkkkkk***%x FOR I=EN-1 STEP -1 UNTIL 1 DO —= ****kxkkxx
DO 700 II = 1, NA
I =EN - IT
W= H(I,I) - P
R = H(I,EN)
IF (M .GT. NA) GO TO 620
c
DO 610 J = M, NA
610 R =R + H(I,J) * H(J,EN)
c
620 IF (WI(I) .GE. 0.0) GO TO 630
2Z = W
S =R
GO TO 700
630 M=1 :
IF (WI(I) .NE. 0.0) GO TO 640
T =W
IF (W .EQ. 0.0) T = MACHEP * NORM
H(I,EN) = -R / T
GO TO 700
C * %k k Kk Kk Kk k kK SOLVE REAL EQUATIONS % Kk Kk Kk % %k Kk k k%
640 X = H(I,I+l)
Y = H(I+1,I)
Q = (WR(I) - P) * (WR(I) - P) + WI(I) * WI(I)
T=(X*S-2Z *R)/Q
H(I,EN) = T
IF (ABS(X) .LE. ABS(2Z)) GO TO 650
H(I+1,EN) = (-R - W * T) / X
GO TO 700
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650 H(I+1,EN) = (=S - Y * T) / 2%

700 CONTINUE
C khkkkkkkkkx END REAL VECTOR * %k %k k Kk k k k Kk k

GO TO 800

C * %k Kk k ok kkkkxk COMPLEX VECTOR * %k kK k% Kk Kk ok k

710 M = NA
c x*xkkk%x%** LAST VECTOR COMPONENT CHOSEN IMAGINARY SO THAT
C EIGENVECTOR MATRIX IS TRIANGULAR X*XXkxkxk*

IF (ABS(H(EN,NA)) .LE. ABS(H(NA,EN))) GO TO 720
H(NA,NA) = Q / H(EN,NA)

H(NA,EN) = -(H(EN,EN) - P) / H(EN,NA)
GO TO 730
720 23 = DCMPLX(0.0D0,-H(NA,EN)) / DCMPLX (H(NA,NA)-P,Q)
H(NA,NA) = DREAL(Z3)
H(NA,EN) = DIMAG(Z3)
730 H(EN,NA) = 0.0
H(EN,EN) = 1.0

ENM2 = NA - 1
" IF (ENM2 .EQ. 0) GO TO 800
c X% *kkkk*kxk* FOR I=EN-2 STEP -1 UNTIL 1 DO —— *X*¥kkxxkxx

DO 790 II = 1, ENM2
I =NA - II
W= H(I,I) - P
RA = 0.0
SA = H(I,EN)

C
DO 760 J = M, NA
RA = RA + H(I,J) * H(J,NA)
SA = SA + H(I,J) * H(J,EN)
760 CONTINUE
C
IF (WI(I) .GE. 0.0) GO TO 770
22 =
R = RA
S = SA
GO TO 790
770 M=1
IF (WI(I) .NE. 0.0) GO TO 780
723 = DCMPLX(-RA,-SA) / DCMPLX(W,Q)
H(I,NA) = DREAL(Z3)
H{I,EN) = DIMAG(Z3)
GO TO 790
C * %k %k k %k %k k k %k Xk SOLVE COMPLEX EQUATIONS * Kk Kk k ok k ok Kk kk
780 X = H(I,I+1)
Y = H(I+1,I)
VR = (WR(I) - P) * (WR(I) - P) + WI(I) * WI(I) - Q *Q
VI = (WR(I) - P) * 2.0 * Q
IF (VR .EQ. 0.0 .AND. VI .EQ. 0.0) VR = MACHEP * NORM
X * (ABS(W) + BABS(Q) + ABS(X) + ABS(Y) + ABS(22))
73 = DCMPLX (X*R-ZZ*RA+Q*SA, X*S-ZZ*SA~-Q*RA) / DCMPLX(VR,VI)
H(I,NA) = DREAL(Z3)
H(I,EN) = DIMAG(23)
IF (ABS(X) .LE. ABS(ZZ) + ABS(Q)) GO TO 785
H(I+1,NA) = (-RA - W * H(I,NA) + Q * H(I,EN)) / X
H(I+1,EN) = (-SA - W * H(I,EN) - Q * H(I,NA)) / X
GO TO 790 .
785 73 = DCMPLX (-R-Y*H(I,NA),-S-Y*H(I,EN)) / DCMPLX(ZZ,Q)

H(I+1,NA) = DREAL(Z3)
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H(I+1,EN) = DIMAG(Z3)
790 CONTINUE

c *kkkkkkkk*x END COMPLEX VECTOR ***kxk*x%x*%
800 CONTINUE
C *kxkkkkkkx END BACK SUBSTITUTION.
C VECTORS OF ISOLATED ROQOTS *****%xkxk%

DO 840 I =1, N
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840

DO 820 J =1I, N
820 Zz(1,J) = H(I,J)

840 CONTINUE

o **k*kk**k*%* MULTIPLY BY TRANSFORMATION MATRIX TO GIVE
o VECTORS OF ORIGINAL FULL MATRIX.
c FOR J=N STEP -1 UNTIL LOW DO —— **k*xk*k%x%
DO 880 JJ = LOW, N
J =N+ LOW - JJ
M = MINO (J, IGH)
c
DO 880 I = LOW, IGH
2z = 0.0
C
DO 860 K = LOW, M
860 22 = 2Z + Z(I,K) * H(K,J)
o

2(1,J) = 22
880 CONTINUE

c
GO TO 1001
c kx%k%**%**%* SET ERROR -- NO CONVEZZ_ RGENCE TO AN
C EIGENVALUE AFTER 30 ITERATIONS ***%%kxk%*

1000 IERR = EN
1001 RETURN

C *khkkkkkkkk LAST CARD OF ZZ HQR2 * % Kk Kk k k k ok k ok
END -
*DECK ZZ BALBAK
C
C __________________________________________________________________
C
SUBROUTINE ZZ_ BALBAK (NM,N,LOW, IGH, SCALE,M, Z)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION SCALE (N),Z (NM, M)
(o]
c THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ZZ BALBAK,
c NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).
C
c THIS SUBROUTINE FORMS THE EIGENVECTORS OF A REAL GENERAL
c MATRIX BY BACK TRANSFORMING THOSE OF THE CORRESPONDING
C 7Z_BALANCED MATRIX DETERMINED BY 2Z_BALANC.
C
c ON INPUT-
C
o NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
c ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
c DIMENSION STATEMENT,
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N IS THE ORDER OF THE MATRIX,
LOW AND IGH ARE INTEGERS DETERMINED BY ZZ_BALANC,

SCALE CONTAINS INFORMATION DETERMINING THE PERMUTATIONS
BND SCALING FACTORS USED BY ZZ_BALANC,

M IS THE NUMBER OF COLUMNS OF 2 TO BE BACK TRANSFORMED,

7 CONTAINS THE REAL AND IMAGINARY PARTS OF THE EIGEN-
VECTORS TO BE BACK TRANSFORMED IN ITS FIRST M COLUMNS.

ON OUTPUT-

7 CONTAINS THE REAL AND IMAGINARY PARTS OF THE
TRANSFORMED EIGENVECTORS IN ITS FIRST M COLUMNS.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO B. S. GARBOW,
APPLIED MATHEMATICS DIVISION, AZZ RGONNE NATIONAL LABORATORY

QOO0 0000000000000

IF (M .EQ. 0) GO TO 200
IF (IGH .EQ. LOW) GO TO 120

c
DO 110 I = LOW, IGH
S = SCALE(I)
C Xxkxx*xk**** LEFT HAND EIGENVECTORS ARE BACK TRANSFORMED
c IF THE FOREGOING STATEMENT IS REPLACED BY
c §=1.0/SCALE (I) . ***x*%kkkxxx
DO 100 g =1, M
100 z(1,J) = 2(1,J) * S
c
110 CONTINUE
o xkkkkkk%- FOR I=LOW-1 STEP -1 UNTIL 1,
c IGH+1 STEP 1 UNTIL N DO —=- *¥%kkxkkx*
120 DO 140 II =1, N
I =1II
IF (I .GE. LOW .AND. I .LE. IGH) GO TO 140
IF (I .LT. LOW) I = LOW - II
K = SCALE(I)
IF (K .EQ. I) GO TO 140
c
DO 130 J =1, M
S = 2(I,J)
2(1,J) = Z(K,J)
Z(K,J) = S
130 CONTINUE
c
140 CONTINUE
C
200 RETURN
C kkkkkkkk*x* LAST CARD OF ZZ BALBAK **Xxkxkkkxx
END
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